
SAFARI: SMT-based Abstraction For Arrays
with Interpolants

Francesco Alberti1, Roberto Bruttomesso2, Silvio Ghilardi2, Silvio Ranise3,
Natasha Sharygina1

1 Formal Verification Lab, University of Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

3 FBK-Irst, Trento, Italy

Abstract. We present SAFARI, a model checker designed to prove
(possibly universally quantified) safety properties of imperative programs
with arrays of unknown length. SAFARI is based on an extension of
lazy abstraction capable of handling existentially quantified formulæ for
symbolically representing states. A heuristics, called term abstraction,
favors the convergence of the tool by “tuning” interpolants and guessing
additional quantified variables of invariants to prune the search space
efficiently.

1 Introduction

Efficient and automatic static analysis of imperative programs is still an open
challenge. A promising line of research investigates the use of model-checking
coupled with abstraction-refinement techniques [2,5,8,10,14,15] including Lazy
Abstraction [3,12] and its later improvements that use interpolants during refine-
ment [13]. An intrinsic limitation of the approaches based on Lazy Abstraction
is that they manipulate quantifier-free formulæ to symbolically represent states.
However, when defining properties over arrays, universal quantified formulæ are
needed, e.g., as in specifying the property “the array is sorted”. The tool we
present, SAFARI, is based on a novel approach [1], in which Lazy Abstraction
is used in combination with the backward reachability analysis behind the Model
Checking Modulo Theories (mcmt) framework [9]. The resulting procedure al-
lows checking safety properties for arrays that require universal quantification
over the indices. Moreover, the presence of quantifiers requires particular care
when computing interpolants. SAFARI comes with an efficient quantifier han-
dling procedure, exploited to retrieve quantifier-free interpolation queries from
instantiations of pairs of inconsistent quantified formulæ.

The paper presents the tool architecture and the implementation details such
as heuristics for abstraction, interpolation tuning, quantifier handling, and syn-
thesis of additional quantified variables in invariants.

Many efficient tools for imperative programs verification have been developed
so far. The main difference between SAFARI and other model-checkers (e.g.,
Blast [3], Impact [13] and Magic [4]) is the ability of handling unbounded

SMT-solver
A
P
I

SlI , v, τ(v,v′), {Uk(v)}Counterexample

Symbolic
Reachability

Analysis

Quantifier
Handler

Lazy
Abstraction

Refinement

Term
Abstraction

Interpolation

(∃∀)ϕ

sat/unsat

∃∀ϕ

ϕ′

s

ŝ

ĈE

{ŝ′}

φCE

{ψ}

ϕ

ϕ̂

ψφ1, φ2

∃∀ϕϕ′φCEsat/unsatφ1, φ2ψ

UNSAFE

SAFE

Fig. 1. Tool architecture.

arrays. Unlike ACSAR [14], SAFARI is able to discover new quantified predi-
cates. Our approach does not require templates for predicate-discovering [16] and
differs from abstract-interpretation techniques (e.g., [6,7,11]) in that it is based
on a declarative framework that allows for identifying classes of array programs
on which the core procedure terminates. For programs not meeting termina-
tion hypothesis user may suggest hints to SAFARI by means of accurate term
abstraction lists as to help the tool to converge.

2 The Tool

The tool architecture is sketched in Fig. 1. SAFARI takes as input a transition
system (v, τ(v,v′)) representing the encoding of an imperative program: v is
the set of state variables among which some are arrays, and it always contains
a variable pc ranging over a finite set {l0, ..., ln} of program locations, among
which we distinguish an initial location lI .1 A set of formulæ {Uk(v)} represent-
ing unsafe states is also given to the tool; each Uk represents a violation of an
assertion in the code. Next we describe the main modules of the tool.
Symbolic Reachability Analysis - This module implements a classical back-
ward reachability analysis. Starting from the set of unsafe states, it repeatedly
computes the pre-images with respect to the transition relation. It halts once it
finds (the negation of a) safe inductive invariant S for the input system or when
a run from the initial state to an unsafe state is found. The symbolic reachabil-
ity search is based on the safety and the covering tests: the former checks the
violation of an assertion while the latter implements the fix-point condition.
Lazy Abstraction - The search for a safe inductive invariant on the original
(concrete) system may require a lot of resources or it cannot be computed be-
cause of possible divergence. To mitigate this problem, SAFARI relies on the

1The reader is referred to [1] for details.

Lazy Abstraction paradigm: in particular it extends it by allowing existentially
quantified formulæ to represent states involving arrays. Moreover, SAFARI is
able to introduce new quantified predicates on the fly, by means of Term Ab-
straction as described later on.
Quantifier Handling - The presence of quantified formulæ imposes particular
attention during the satisfiability tests: available SMT-Solvers might not be able
to automatically find suitable instances for the quantified variables. SAFARI
provides a specific instantiation procedure, adapted from [9] to address this is-
sue. To be effective, this procedure implements caching of information inside
of specific data-structures used to represent formulæ. On one hand the caching
increases the amount of space, on the other hand it cuts the number of instan-
tiations due to constant-time checks. Alternatively, the quantified query may be
passed to the SMT-Solver directly.
Refinement - This module receives an abstract counterexample and it checks
first if the counterexample has a concrete counterpart. If so a feasible execution
violating an assertion Uk is returned to the user. Otherwise the formulæ rep-
resenting the states along the abstract execution trace have to be strengthened,
possibly by adding new predicates, in order to rule out spurious executions. In
the current implementation, refinement is performed by means of interpolation:
the Refinement module iteratively interacts with the Interpolation module in
order to retrieve quantifier-free interpolants.
Interpolation - Quantifier-free interpolation for formulæ involving arrays is in
general not possible: in our case this situation is complicated by the presence of
existential quantifiers. However, in [1], we show that the particular structure of
the queries we handle, admits an equisatisfiable formulation at the quantifier-
free level, for which meaningful quantifier-free interpolants can be computed.
Quantifiers can be then reintroduced back, to preserve the original semantic of
the formulæ. This technique, however, may not be sufficient to discover suitable
new quantified predicates. To address this problem, SAFARI combines interpo-
lation with a procedure called Term Abstraction.
Term Abstraction - Term Abstraction is a novel technique applied during the
abstraction phase to select the “right” overapproximation to be computed, and
during the refinement phase to “lift” the concrete infeasible counterexample to a
more abstract level, by eliminating some terms. The effect of Term Abstraction is
that of controlling both the abstraction function and the interpolants produced
during refinement. Term Abstraction is discussed in detail in Section 3.
SMT-Solver - The tool relies on an SMT-Solver to decide satisfiability queries.
An abstract interface provides an API to separate the actual SMT-Solver used
and the services which are requested by SAFARI. This interface allows the
invocation of different engines needed for particular tasks. SAFARI provides
interface for OpenSMT and SMT-LIB v.2.
Implementation - SAFARI is written in C++ and can be downloaded from
http://verify.inf.usi.ch/safari. Information on the usage of the tool
and a full description of all the options can be found on the SAFARI’s website.

http://verify.inf.usi.ch/safari

3 Discussion

Term Abstraction and its benefits Term Abstraction is the main heuristic
which distinguishes SAFARI from other tools based on abstraction-refinement.
It works as follows. Suppose we are given an unsatisfiable formula of the form
ψ1∧ψ2, and a list of undesired terms t1, . . . , tn (called term abstraction list). The
underlying idea is that terms in this list should be abstracted away for achieving
convergence of the model checker. Iteratively we check if ψ1(ci/ti) ∧ ψ2(di/ti) is
unsatisfiable, for ci and di being fresh constants: if so then we set ψ1 as ψ1(ci/ti)
and ψ2 as ψ2(di/ti). Eventually we are left with an unsatisfiable formula ψ1∧ψ2

where some undesired terms in t1, . . . , tn have been removed: the interpolant of
ψ1 and ψ2, which can be computed with existing techniques, is likely to be free
of the eliminated terms as well. SAFARI retrieves automatically from the input
system a list of terms to be abstracted. The terms to abstract are usually set
to iterators or variables representing the lengths of the arrays or the bounds of
loops. The user can also suggest terms to be added to the list.

1 i = 0;
2 while(i < n)
3 a[i] = 0;
4 i = i+ 1;

Inv: ∀x. (0 ≤ x < n)⇒ a[x] = 0

5 j = 0; f = true;
6 while(j < n)
7 if(a[j]! = 0) f = false;
8 j = j + 1;
9 assert (f);

Fig. 2. Pseudo-code for “init and test”.

Synthesis of quantified invariants
SAFARI is able to generate new quan-
tified variables if they are needed to
build the safe inductive invariant. Con-
sider the pseudocode of Fig. 2: the first
loop initializes all elements of the ar-
ray a to 0, while the second loop sets a
Boolean flag to false if a position with
an uninitialized element is found. The
program is clearly safe (the assertion is
always satisfied), but since the length
of the array a is not known, we need
a quantified formula to represent the property Inv reached by every execu-
tion after the first loop. SAFARI is able to infer that formula automatically,
even if the property to check does not contain any quantified variable (see line
9 of Fig.2 where the property involves the flag f only without any reference
to the array a): this process of “synthesis” happens as a consequence of using
of existentially quantified labels and term abstraction when refining a spuri-
ous (abstract) counterexample. The typical situation is that in which term ab-
straction succeeds in removing an iterator j from a concrete label of the form
∃x. (j < n∧x = j∧a[x] 6= 0) to obtain ∃x. (x < n∧a[x] 6= 0), where 0 can be any
other constant depending on the example. The new label contains no reference to
the original iterator j, it is more abstract, and it resembles the structure of Inv
(once negated: recall that our approach is backward). In short, term abstraction
is used during refinement to lift an infeasible concrete trace (corresponding to a
spurious abstract counterexample) to the most abstract level with respect to a
set of terms. As a side effect, a quantified predicate may be inferred.
Quantifier handling The approach behind SAFARI relies on Lazy Abstrac-
tion combined with the mcmt framework [1]. Intuitively, during the backward-
reachability from the set of error states, we keep track of the array index positions

of interest (the positions that are accessed for read) with existentially quantified
variables. Safety and covering checks can be performed with dedicated instan-
tiation heuristics. Whereas safety tests are decidable [1], covering tests must be
dealt with incomplete algorithms based on clever instantiations (incompleteness
of covering tests do not affect the soundness of the tool, they can only affect
termination chances). In addition, special care is needed when discovering new
predicates via interpolation: quantified queries (expressing trace feasibility) can
be Skolemized and instantiated, thus producing equisatisfiable quantifier-free
queries. These quantifier-free queries belong to a fragment of the theory of ar-
rays enjoying quantifier-free interpolation. Then, quantifier-free interpolants are
computed to refine node labeling, where existential quantifiers are re-introduced
by existentially quantifying the Skolem constants (see [1] for details).

4 Experiments

We applied SAFARI to the verification of various problems with arrays. None of
these problems can be solved by SAFARI without abstraction. Table 1 reports
some experimental results (obtained running SAFARI on an Intel i7 @2.66 GHz,
4GB of RAM running OSX 10.7). More statistics can be found on SAFARI web-
site. The benchmarks have been run with the most efficient options, namely with
“Term Abstraction” both for abstraction and refinement. The term abstraction
list is automatically computed for all the benchmarks but those marked with
a star: in those few cases a user-defined list has been provided. The table re-
ports variations of the same problems (v1,v2) and properties specified (P1,P2).
The benchmarks marked “buggy” were injected with a bug that invalidates the
property. To test the flexibility of SAFARI, we also verified some randomly gen-
erated problems taken from those shipped with the distribution of the ARMC
model-checker (http://www.mpi-sws.org/˜rybal/armc/). They consists
of safety properties of numerical programs without arrays. For those, our tool can
solve 23 out of 28 benchmarks with abstraction, but only 9 without using it. For
all of these problems, SAFARI automatically retrieves a suitable term abstrac-
tion list. For those benchmarks that could be solved even without abstraction,
the overhead of abstraction is generally negligible.

Acknowledgements The work of the first author was supported by the Hasler
Foundation under project 09047 and that of the fourth author was partially
supported by the “SIAM” project founded by Provincia Autonoma di Trento in
the context of the “team 2009 - Incoming” COFUND action of the European
Commission (FP7).

References

1. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy Ab-
straction with Interpolants for Arrays. In LPAR-18, pages 46–61, 2012.

2. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Ab-
straction of C Programs. In PLDI, pages 203–213, 2001.

http://www.mpi-sws.org/~rybal/armc/

Benchmark Time (s) SMT-calls Iter. P. vars |S| S vars Status

binary sort∗ 0.3 817 2 2 21 4 SAFE
filter (P1) 0.03 27 0 1 2 1 SAFE
filter (P2) 0.04 28 0 1 2 1 SAFE
filter (all) 0.03 34 0 1 3 1 SAFE
find (v1, P1) 0.6 171 3 1 7 5 SAFE
find (v1, P1, buggy) 0.05 71 1 1 - - UNSAFE
find (v1, P2) 0.06 65 1 1 4 3 SAFE
find (v1, all) 0.8 246 4 1 12 5 SAFE
find (v2) 0.08 50 1 1 3 1 SAFE
init and test 0.3 352 3 0 13 2 SAFE
initialization 0.1 90 1 1 4 4 SAFE
integers 0.02 20 0 0 2 0 SAFE
max in array 0.9 1237 8 1 29 3 SAFE
max in array (buggy) 0.1 235 2 1 - - UNSAFE
partition (v1, P1) 0.05 32 0 1 4 1 SAFE
partition (v1, P2) 0.06 32 0 1 4 1 SAFE
partition (v1, all) 0.08 63 0 1 4 1 SAFE
partition (v2) 0.04 33 0 1 2 2 SAFE
partition (v2, buggy) 0.09 62 0 1 - - UNSAFE
selection sort∗ 0.6 478 4 2 15 3 SAFE
selection sort (buggy) 1.9 1957 8 2 - - UNSAFE
strcmp 0.2 308 4 1 12 2 SAFE
strcpy 0.02 16 0 1 2 2 SAFE
vararg∗ 0.05 48 0 1 3 2 SAFE

Table 1. Total time, calls to SMT, CEGAR iterations, quantified variables in the
assertion, size of the covering set, quantified variables in the covering set.

3. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast. STTT, 9(5-6):505–525, 2007.

4. Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in c. In ICSE, pages 385–395, 2003.

5. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In CAV, pages 154–169, 2000.

6. P. Cousot, R. Cousot, and F. Logozzo. A Parametric Segmentation Functor for
Fully Automatic and Scalable Array Content Analysis. In POPL, 2011.

7. Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak
updates. In ESOP, pages 246–266, 2010.

8. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
POPL, pages 191–202, 2002.

9. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR,
pages 22–29, 2010.

10. S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In CAV,
pages 72–83, 1997.

11. N. Halbwachs and Mathias P. Discovering Properties about Arrays in Simple
Programs. In PLDI’08, pages 339–348, 2008.

12. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In
POPL, pages 58–70, 2002.

13. K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
14. M. N. Seghir, A. Podelski, and T. Wies. Abstraction Refinement for Quantified

Array Assertions. In SAS, pages 3–18, 2009.
15. S.Lahiri and R. Bryant. Predicate Abstraction with Indexed Predicates. TOCL,

9(1), 2007.
16. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate

Abstraction. In PLDI, 2009.

	SAFARI: SMT-based Abstraction For Arrays with Interpolants
	 Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio Ranise, Natasha Sharygina

