Intro & Background Loop Summarization Experiments Conclusion

Loop Summarization using Abstract Transformers

Daniel Kroning', Natasha Sharygina®®, Stefano Tonetta®,
Aliaksei Tsitovich! and Christoph M. Wintersteiger*
[oxford University, Computing Laboratory, UK
[University of Lugano, Switzerland
[S]Fondazione Bruno Kessler, Trento, Italy
4] Computer Systems Institute, ETH Zurich, Switzerland

BBlSchool of Computer Science, Carnegie Mellon University, USA

October 21, 2008

1/20

Intro & Background Loop Summarization Experiments Conclusion

What am | going to present in the next 20
minutes?

@ Idea of loop summarization

@ LOOPFROG - tool, which implements it all

L2°P &

2/20

Intro & Background Loop Summarization Experiments Conclusion

Abstraction

Software static analysis needs abstraction J

All successful techniques use abstraction

Loop Summarization using Abstract Transformers

Intro & Background Loop Summarization Experiments Conclusion

Abstraction

Software static analysis needs abstraction J

/ v | «— Abstraction function « (e.g., using
1

/ \\ \ abstract domains or predicates)

All successful techniques use abstraction

Loop Summarization using Abstract Transformers

¢ Y BE]

Loop Summarization Experiments Conclusion
Abstract Interpretation

@ Define abstract domains (e.g., intervals, polyhedra)

@ lteratively evaluate the program until fixpoint is reached

4/20

Loop Summarization Experiments Conclusion
Abstract Interpretation

@ Define abstract domains (e.g., intervals, polyhedra)

@ lteratively evaluate the program until fixpoint is reached

Problem 1
Iterative fixpoint computation is EXPENSIVE J

Also, in case of failure, no counter-example is given as feedback.

/ 20

Loop Summarization Experiments Conclusion
Existing Solution

@ To make iterative computation converge - apply widening
(overapproximation of the set of abstract values)

5 /20

Loop Summarization Experiments
Existing Solution

@ To make iterative computation converge - apply widening
(overapproximation of the set of abstract values)

Problem 2
Widening causes Imprecision

Introduces a lot of false positives

Tools: Polyspace, ASTREE

Conclusion

/ 20

Intro & Background Loop Summarization

Experiments Conclusion

Alternative approach: CEGAR-based techniques

@ Abstract the program according to set of the predicates.
@ Check the abstract model and get the counter-example (CE)

@ If CE is spurious - refine set of predicates to remove it, update the
abstract model and repeat iteratively until a real CE or no CEs at all.

6 /20

Intro & Background Loop Summarization Experiments

Conclusion

Alternative approach: CEGAR-based techniques

@ Abstract the program according to set of the predicates.
@ Check the abstract model and get the counter-example (CE)

@ If CE is spurious - refine set of predicates to remove it, update the
abstract model and repeat iteratively until a real CE or no CEs at all.

Problem 3

Abstraction requires either quantification
or overapproximation

First variant blows up. Second introduces spurious transitions.

Tools: SATABS, SLAM, BLAST, MAGIC etc.

Intro & Background Loop Summarization Experiments Conclusion

The common problem of iterative fixpoint computations
They All Are Afraid Of Loops!

7/20

Loop Summarization Experiments Conclusion
How would they handle this?

1 p=a;

2 while(xp!=0){
3 if(xp="/")
4 *p=0;

5 pt++;

6

}

8/20

Loop Summarization Experiments Conclusion
How would they handle this?

1 p=a;

2 while(xp!=0){
3 if(xp="/")
4 x*p=0;

5 pt++;

6

}

V.

@ CEGAR-based — try to get predicates until it fails (might not
terminate)

8/20

Loop Summarization Experiments Conclusion
How would they handle this?

1 p=a;

2 while(xp!=0){
3 if(xp="/")
4 xp=0;

5 pt++;

6

}

4

@ CEGAR-based — try to get predicates until it fails (might not
terminate)

@ Abs. Int. — (precise domain + aggressive widening) or imprecise
domain

8/20

Loop Summarization Experiments Conclusion
-
Our Solution

@ Avoid iterative computation of an abstract fixpoint. Instead build
summaries. Make the summaries precise.

@ Encode loop-free fragments into concrete summaries.

@ Replace each loop by its abstract summary.

@ Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, iterative computation is avoided.

9/20

Loop Summarization Experiments Conclusion
-
Our Solution

@ Avoid iterative computation of an abstract fixpoint. Instead build
summaries. Make the summaries precise.

@ Encode loop-free fragments into concrete summaries.

@ Replace each loop by its abstract summary.
(I will explain how to construct an abstract summary on example)

@ Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, iterative computation is avoided.

9 /20

Intro & Background

SOl W N

Loop Summarization Experiments

Prepare the loop for summarization

ilz:iie (xp!=0){
if (+p—"/")
*p=0;

p++;

}

e & ¢

Transformer of the loop guard

(((*P == 0) N Za N\ (pa > /a))
V((xp! =0) A (pa # L) A ..))

Conclusion

Transformer of the loop body

(xp =' /' A& = alxp = 0])
V(xp £)/ A& = a))

Ap' =p+1)

pa - offset of the pointer p from the base address of the array a
z, - True if a contains the zero character

s, - True if a contains the slash character

@ I, is the index of the first zero character (if present).!

1., zs and b, (buffer size) are instrumented according to Dor et. al.

10 / 20

Intro & Background Experiments Conclusion
Invariant candidates

Heuristically provide invariant candidates ¢ to use as
a summary:

@ (0 < p, < 1,) A zy A s, - pointer offset is bounded
by string length and doesn’t contain slash character

@ z, - string remains zero-terminated

11/20

Intro & Background Loop Summarization Experiments Conclusion

Single loop summarization

To every candidate assertion 1 we apply:

1 p=a; @ transformer of the loop guard

2 while (xp!=0){ @ transformer of the loop body

3 if(xp="/") . o

4 +p=0: If obtained 1)/ == 4 then % is invariant
: of the loop (implication is checked using a

5 pt++; o

6 } decision procedure, e.g., SAT).

Loop summary
a'[] = nondet() A pl, = nondet() A (2, = z,)
A0 < pl <) A zZh A —s,)

Summary, i.e. symbolic transformer, is constructed, not iteratively computed

12 /20

Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

SUMMARIZE(7)

input : program ™ = (U, G)
output : over-approximation 7’ of 7
begin
(T, >) :=sub-graph dependency tree of m;
T = T,
for each G’ such that G > G’ do
(U, G""):=Summarize((U, G')); © Call summarization recursively for
7, := m, where G’ is replaced with G'/;
update (T, >); all nested loops

if 7, is a single loop then

(A, t) := choose abstract interpretation for 7/; g Construct abstract summary for

9 := test invariant candidates for t on 7;

7/ = SINGLELOOPSUMMARY(rr, A, ty,); each single loop
else

/* m, is loop-free */

("= Suma, o ()) © Encode concrete summary of the
return 7’ loop-free fragment

end

13 /20

Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

SUMMARIZE(7)

input : program ™ = (U, G)

output : over-approximation 7’ of 7

begin
(T, >) :=sub-graph dependency tree of 7; @ Linear in number of |00p5
T =,

for each G’ such that G > G’ do
(U, G"y:=SummARIZE((U, G'));
7, := m, where G’ is replaced with G'/;
update (T, >);

if 7, is a single loop then

(A, t) := choose abstract interpretation for 7/;
:= test invariant candidates for t on 7,;
i= SINGLELOOPSUMMARY(7r, A, ty,);

else

/* m, is loop-free */

[7\'/ = Sump 7y (7r);]
return 7’

end

13 /20

Intro & Background Experiments Conclusion
Summarization for arbitrary programs

SUMMARIZE(7)

input : program ™ = (U, G)
output : over-approximation 7’ of 7
begin
(T, >) :=sub-graph dependency tree of ; @ Linear in number of |00p5
T = T
’ ’
for each G_such that G > G _do _ @ Summarization of each loop takes
(U, G""):=SuMMARIZE((U, G"));
7, := m, where G’ is replaced with G'/; finite number of calls to decision

update (T, >); procedure

if 7, is a single loop then

(;4, t) := choose abstract interpretation for 7 ;
1) := test invariant candidates for t on 7 ;
7’ := SINGLELOOPSUMMARY(7/, A,)k

else

/* m, is loop-free */

[7\'/ = Sump 7y (7r);]
return 7’

end

13 /20

Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

SUMMARIZE(7)

input : program ™ = (U, G)

output : over-approximation 7’ of 7

begin
(T, >) :=sub-graph dependency tree of ; @ Linear in number of |00p5
T =,

f h G’ such th, " d . .
oreachC suchthat 6 > ¢ do @ Summarization of each loop takes
(U, G""):=SuMMARIZE((U, G"));

7, := m, where G’ is replaced with G'/; finite number of calls to decision
update (T, >);
procedure.

if 7, is a single loop then

(A, t) := choose abstract interpretation for 7/; @ Precision depends on selection of

1) := test invariant candidates for t on 7 ;

n’ := SINGLELOOPSUMMARY(7/, A, ty,); abstract domains
else

/* m, is loop-free */

[”/ = Suma oy ()i]
return 7\',

end

13 /20

Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

SUMMARIZE(7)

input : program ™ = (U, G)

output : over-approximation 7’ of 7

begin
(T, >) :=sub-graph dependency tree of ; @ Linear in number of |00p5
T =,

f h G’ such th, " d . .
oreachC suchthat 6 > ¢ do @ Summarization of each loop takes
(U, G""):=SuMMARIZE((U, G"));

7, := m, where G’ is replaced with G'/; finite number of calls to decision
update (T, >);
procedure.

if 7, is a single loop then

(A, t) := choose abstract interpretation for 7/; @ Precision depends on selection of

1) := test invariant candidates for t on 7 ;

n’ := SINGLELOOPSUMMARY(7/, A, ty,); abstract domains

else . .
/¢ 7 15 Loop-tree */ @ Abstract domains are localized to
[7\'/ = Sump 7y (7r);] IOOpS

return 7\',

end

13 /20

Intro & Background Experiments Conclusion
Assertion check

Model checker is used to check the assertions on the obtained
loop-less model.

As a feedback user gets:

@ Path (partial) to a violated assertion with variables assignment, i.e.
leaping counter-example

@ Results of summarization along the path

@ Loop summary and original loop body
@ Applied abstract domains

@ Discovered invariants

@ Rejected invariants

14/

Intro & Background Loop Summarization Conclusion
-
Implementation

LoOPFROG- static analysis tool for C programs

1 0OP 2

@ Models from C programs are created using Goto-CC front-end?;

@ Uses symbolic engine of CBMC for invariant candidates check and
final assertion check.

@ Currently doesn't support recursive calls.

2http:/ /www.cprover.org/goto-cc

15 / 20

Intro & Background Loop Summarization Conclusion
Abstract domains

Invariant [Details

zs = true Tests if zero-ermination is preserved
zs N\ Is < bs Tests if string content stays within allocated buffer
zs N0 < i< Is | Tests if iterator value is bounded by string length
0<i<bs Tests if iterator value is bounded by allocated buffer size
valid, = true | Tests for pointer offset validity preservation

Table: Some of the domains in the LOOPFROG's library.

16 /

Intro & Background

Loop Summarization

Benchmark suite
| R(d) | R(f) | R(—f|d)

Benchmark suite from Zitser et.al.

LooprFroa 1.00 | 0.38 0.62
Interval Domain | 1.00 | 0.98 0.02
Polyspace 0.87 | 0.50 0.37
Splint 0.57 | 0.43 0.30
Boon 0.05 | 0.05 0
Archer 0.01 0 0
Uno 0 0 0

Table: R(d), R(f) and R(—f|d) for various static analysis tools.

@ Detection rate R(d) — number of correctly detected bugs

Conclusion

@ False positive rate R(f) — number of incorrectly detected bugs in fixed

versions of test cases

@ Discrimination rate R(—f|d) — ratio of test cases on which an error is

correctly reported, while it is, also correctly, not reported in the

corresponding fixed test case.

17/

20

Intro & Background Loop Summarization Conclusion
.
Large-scale evaluation
" Time Assertions
.g o = w

B IETE I A R
< <] G I} x £ I} o 8
2 |4 | E=x| 28| 5|58 | 8| £ | ¢
Suite Program £ 3* nk| O< - a3 - a S
freecell-solver aisleriot-board-2.8.12 347 26 10s| 295 305sf 111MB| 358 165 193
freecell-solver gnome-board-2.8.12 208 8 Os| 3| 44 13MB| 49 16 33
freecell-solver microsoft-board-2.8.12 168 4 25| 95| 115 32MB| 45 19 26
freecell-solver pi-ms-board-2.8.12 185 4 2| 10: 135 33MB| 53 27 26
gnupg make-dns-cert-1.4.4 232 5 Os| Os| 19 IMB| 12 5 7
gnupg mk-tdata-1.4.4 117 1 Os| Os| 05 3MB| 8 7 1
inn encode-2.4.3 155 3 Os| 2| 24 6MB| 88 66 22
inn ninpaths-2.4.3 476 25 5s 405 459 49MB| 96 47 49
ncompress compress-4.2.4 806 12 45sf 4060s 4106s 345MB| 306 212 94
texinfo ginstall-info-4.7 1265 46 21| 3265 3475 127MB| 304 226 78
texinfo makedoc-4.7 701 18 EE 65| 165 28MB| 55 33 22
texinfo texindex-4.7 1341 44 415: 9336s| 9757s| 1021MB| 604 496 108
wu-ftpd ckconfig-2.5.0 135 0 Os| Os| 05 3MB| 3 3 0
wu-ftpd ckconfig-2.6.2 247 10 135 434 574 27MB| 53 10 43
wu-ftpd ftpcount-2.5.0 379 13 10s| 324 424 37MB| 115 41 74
wu-ftpd ftpcount-2.6.2 392 14 8s| 244 324 39MB| 118 42 76
wu-ftpd ftprestart-2.6.2 372 23 485 2329 280s| 55MB| 142 31 111
wu-ftpd ftpshut-2.5.0 261 5 14 95| 105 13MB| 83 29 54
wu-ftpd ftpshut-2.6.2 503 26 27| 79¢ 106sf 503MB| 232 210 22
wu-ftpd ftpwho-2.5.0 379 13 79 234 304 37MB| 115 41 74
wu-ftpd ftpwho-2.6.2 392 14 EE 274 354 39MB| 118 42 76
wu-ftpd privatepw-2.6.2 353 9 4s 174 224 32MB| 80 51 29
18 /

20

Intro & Background Loop Summarization Experiments
To conclude

@ We proposed an algorithm for static analysis of programs which is:

@ sound (loop-less model is an overapproximation of the program)
@ scalable (avoids iterative abstract fixpoint computation)

o precise (with configurable precision)

@ giving you feedback (leaping counter-example)

@ We implemented it in a tool LOOPFROG
(http://www.verify.inf.unisi.ch /loopfrog)

@ We applied LOOPFROG to a wide range of benchmarks and the
result shows that it outperforms the competitors

19 /20

Intro & Background Loop Summarization Experiments
Thanks for listening!

Questions ?

20 / 20

	Intro & Background
	Loop Summarization
	Experiments
	Conclusion

