
Intro & Background Loop Summarization Experiments Conclusion

Loop Summarization using Abstract Transformers

Daniel Kröning1, Natasha Sharygina2,5, Stefano Tonetta3,
Aliaksei Tsitovich1 and Christoph M. Wintersteiger4

[1]Oxford University, Computing Laboratory, UK

[1] University of Lugano, Switzerland

[3]Fondazione Bruno Kessler, Trento, Italy

[4]Computer Systems Institute, ETH Zurich, Switzerland

[5]School of Computer Science, Carnegie Mellon University, USA

October 21, 2008

1 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

What am I going to present in the next 20

minutes?

Idea of loop summarization

LoopFrog - tool, which implements it all

2 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Abstraction

Software static analysis needs abstraction

All successful techniques use abstraction

3 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Abstraction

Software static analysis needs abstraction

← Abstraction function α (e.g., using

abstract domains or predicates)

All successful techniques use abstraction

3 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Abstract Interpretation

Define abstract domains (e.g., intervals, polyhedra)

Iteratively evaluate the program until fixpoint is reached

4 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Abstract Interpretation

Define abstract domains (e.g., intervals, polyhedra)

Iteratively evaluate the program until fixpoint is reached

Problem 1

Iterative fixpoint computation is EXPENSIVE

Also, in case of failure, no counter-example is given as feedback.

4 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Existing Solution

To make iterative computation converge - apply widening
(overapproximation of the set of abstract values)

5 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Existing Solution

To make iterative computation converge - apply widening
(overapproximation of the set of abstract values)

Problem 2

Widening causes Imprecision

Introduces a lot of false positives

Tools: Polyspace, ASTRÉE

5 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Alternative approach: CEGAR-based techniques

Abstract the program according to set of the predicates.

Check the abstract model and get the counter-example (CE)

If CE is spurious - refine set of predicates to remove it, update the
abstract model and repeat iteratively until a real CE or no CEs at all.

6 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Alternative approach: CEGAR-based techniques

Abstract the program according to set of the predicates.

Check the abstract model and get the counter-example (CE)

If CE is spurious - refine set of predicates to remove it, update the
abstract model and repeat iteratively until a real CE or no CEs at all.

Problem 3

Abstraction requires either quantification

or overapproximation

First variant blows up. Second introduces spurious transitions.

Tools: SATABS, SLAM, BLAST, MAGIC etc.

6 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Loops

The common problem of iterative fixpoint computations

They All Are Afraid Of Loops!

7 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

How would they handle this?

Example

1 p=a ;
2 whi le (∗ p!=0){
3 i f (∗ p==’ / ’ )
4 ∗p=0;
5 p++;
6 }

8 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

How would they handle this?

Example

1 p=a ;
2 whi le (∗ p!=0){
3 i f (∗ p==’ / ’ )
4 ∗p=0;
5 p++;
6 }

CEGAR-based → try to get predicates until it fails (might not
terminate)

8 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

How would they handle this?

Example

1 p=a ;
2 whi le (∗ p!=0){
3 i f (∗ p==’ / ’ )
4 ∗p=0;
5 p++;
6 }

CEGAR-based → try to get predicates until it fails (might not
terminate)

Abs. Int. → (precise domain + aggressive widening) or imprecise
domain

8 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Our Solution

Avoid iterative computation of an abstract fixpoint. Instead build
summaries. Make the summaries precise.

Encode loop-free fragments into concrete summaries.

Replace each loop by its abstract summary.

Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, iterative computation is avoided.

9 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Our Solution

Avoid iterative computation of an abstract fixpoint. Instead build
summaries. Make the summaries precise.

Encode loop-free fragments into concrete summaries.

Replace each loop by its abstract summary.

(I will explain how to construct an abstract summary on example)

Perform an assertion check on the obtained abstract model. Since
there are no loops anymore, iterative computation is avoided.

9 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Prepare the loop for summarization

Example

1 p=a ;
2 whi le (∗p !=0){
3 i f (∗p==’ / ’ )
4 ∗p=0;
5 p++;
6 }

Transformer of the loop guard

(((∗p == 0) ∧ za ∧ (pa ≥ la))
∨((∗p! = 0) ∧ (pa 6= la) ∧ ...))

Transformer of the loop body

((∗p =′ /′ ∧ a′ = a[∗p = 0])
∨(∗p 6=′ /′ ∧ a′ = a))

∧(p′ = p + 1)

pa - offset of the pointer p from the base address of the array a

za - True if a contains the zero character

sa - True if a contains the slash character

la is the index of the first zero character (if present).1

1
la, za and ba (buffer size) are instrumented according to Dor et. al.

10 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Invariant candidates

Heuristically provide invariant candidates ψ to use as
a summary:

(0 ≤ pa ≤ la) ∧ za ∧ ¬sa - pointer offset is bounded
by string length and doesn’t contain slash character

za - string remains zero-terminated

11 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Single loop summarization

Example

1 p=a ;
2 whi le (∗p !=0){
3 i f (∗p==’ / ’ )
4 ∗p=0;
5 p++;
6 }

To every candidate assertion ψ we apply:

1 transformer of the loop guard

2 transformer of the loop body

If obtained ψ′ =⇒ ψ then ψ is invariant
of the loop (implication is checked using a
decision procedure, e.g., SAT).

Loop summary

a′[] = nondet() ∧ p′

a = nondet() ∧ (z ′a = za)
∧((0 ≤ p′

a ≤ la) ∧ z ′a ∧ ¬sa)

Summary, i.e. symbolic transformer, is constructed, not iteratively computed

12 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

Summarize(π)
input : program π = 〈U, G〉
output : over-approximation π′ of π
begin

〈T , >〉 :=sub-graph dependency tree of π;

πr := π;
for each G ′ such that G > G ′ do

〈U, G ′′〉:=Summarize(〈U, G ′〉);
πr := πr where G ′ is replaced with G ′′ ;
update 〈T , >〉;

if πr is a single loop then

〈Â, t〉 := choose abstract interpretation for πr ;
ψ := test invariant candidates for t on πr ;
π′ := SingleLoopSummary(πr , Â, tψ );

else

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr );

return π′

end

1 Call summarization recursively for
all nested loops

2 Construct abstract summary for
each single loop

3 Encode concrete summary of the
loop-free fragment

13 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

Summarize(π)
input : program π = 〈U, G〉
output : over-approximation π′ of π
begin

〈T , >〉 :=sub-graph dependency tree of π;

πr := π;
for each G ′ such that G > G ′ do

〈U, G ′′〉:=Summarize(〈U, G ′〉);
πr := πr where G ′ is replaced with G ′′ ;
update 〈T , >〉;

if πr is a single loop then

〈Â, t〉 := choose abstract interpretation for πr ;
ψ := test invariant candidates for t on πr ;
π′ := SingleLoopSummary(πr , Â, tψ );

else

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr );

return π′

end

Linear in number of loops

13 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

Summarize(π)
input : program π = 〈U, G〉
output : over-approximation π′ of π
begin

〈T , >〉 :=sub-graph dependency tree of π;

πr := π;
for each G ′ such that G > G ′ do

〈U, G ′′〉:=Summarize(〈U, G ′〉);
πr := πr where G ′ is replaced with G ′′ ;
update 〈T , >〉;

if πr is a single loop then

〈Â, t〉 := choose abstract interpretation for πr ;
ψ := test invariant candidates for t on πr ;
π′ := SingleLoopSummary(πr , Â, tψ );

else

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr );

return π′

end

Linear in number of loops

Summarization of each loop takes
finite number of calls to decision
procedure.

13 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

Summarize(π)
input : program π = 〈U, G〉
output : over-approximation π′ of π
begin

〈T , >〉 :=sub-graph dependency tree of π;

πr := π;
for each G ′ such that G > G ′ do

〈U, G ′′〉:=Summarize(〈U, G ′〉);
πr := πr where G ′ is replaced with G ′′ ;
update 〈T , >〉;

if πr is a single loop then

〈Â, t〉 := choose abstract interpretation for πr ;
ψ := test invariant candidates for t on πr ;
π′ := SingleLoopSummary(πr , Â, tψ );

else

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr );

return π′

end

Linear in number of loops

Summarization of each loop takes
finite number of calls to decision
procedure.

Precision depends on selection of
abstract domains

13 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Summarization for arbitrary programs

Summarize(π)
input : program π = 〈U, G〉
output : over-approximation π′ of π
begin

〈T , >〉 :=sub-graph dependency tree of π;

πr := π;
for each G ′ such that G > G ′ do

〈U, G ′′〉:=Summarize(〈U, G ′〉);
πr := πr where G ′ is replaced with G ′′ ;
update 〈T , >〉;

if πr is a single loop then

〈Â, t〉 := choose abstract interpretation for πr ;
ψ := test invariant candidates for t on πr ;
π′ := SingleLoopSummary(πr , Â, tψ );

else

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr );

return π′

end

Linear in number of loops

Summarization of each loop takes
finite number of calls to decision
procedure.

Precision depends on selection of
abstract domains

Abstract domains are localized to
loops

13 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Assertion check

Model checker is used to check the assertions on the obtained
loop-less model.

As a feedback user gets:

Path (partial) to a violated assertion with variables assignment, i.e.
leaping counter-example

Results of summarization along the path

Loop summary and original loop body
Applied abstract domains
Discovered invariants
Rejected invariants

14 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Implementation

LoopFrog- static analysis tool for C programs

Models from C programs are created using Goto-CC front-end2;

Uses symbolic engine of CBMC for invariant candidates check and
final assertion check.

Currently doesn’t support recursive calls.

2http://www.cprover.org/goto-cc

15 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Abstract domains

Invariant Details

zs = true Tests if zero-ermination is preserved
zs ∧ ls < bs Tests if string content stays within allocated buffer

zs ∧ 0 ≤ i < ls Tests if iterator value is bounded by string length
0 ≤ i < bs Tests if iterator value is bounded by allocated buffer size

validp = true Tests for pointer offset validity preservation

Table: Some of the domains in the LoopFrog’s library.

16 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Benchmark suite

R(d) R(f ) R(¬f |d)

Benchmark suite from Zitser et.al.

LoopFrog 1.00 0.38 0.62

Interval Domain 1.00 0.98 0.02

Polyspace 0.87 0.50 0.37

Splint 0.57 0.43 0.30

Boon 0.05 0.05 0

Archer 0.01 0 0

Uno 0 0 0

Table: R(d), R(f ) and R(¬f |d) for various static analysis tools.

Detection rate R(d) — number of correctly detected bugs

False positive rate R(f ) — number of incorrectly detected bugs in fixed
versions of test cases

Discrimination rate R(¬f |d) — ratio of test cases on which an error is

correctly reported, while it is, also correctly, not reported in the

corresponding fixed test case.

17 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Large-scale evaluation

Time Assertions

Suite Program In
st

ru
c
ti
o
n
s

#
L
o
o
p
s

S
u
m

m
a
ri
-

z
a
ti
o
n

C
h
e
c
k
in

g

A
ss

e
rt

io
n
s

T
o
ta

l

P
e
a
k

M
e
m

o
ry

T
o
ta

l

P
a
ss

e
d

V
io

la
te

d

freecell-solver aisleriot-board-2.8.12 347 26 10s 295s 305s 111MB 358 165 193
freecell-solver gnome-board-2.8.12 208 8 0s 3s 4s 13MB 49 16 33
freecell-solver microsoft-board-2.8.12 168 4 2s 9s 11s 32MB 45 19 26
freecell-solver pi-ms-board-2.8.12 185 4 2s 10s 13s 33MB 53 27 26
gnupg make-dns-cert-1.4.4 232 5 0s 0s 1s 9MB 12 5 7
gnupg mk-tdata-1.4.4 117 1 0s 0s 0s 3MB 8 7 1
inn encode-2.4.3 155 3 0s 2s 2s 6MB 88 66 22
inn ninpaths-2.4.3 476 25 5s 40s 45s 49MB 96 47 49
ncompress compress-4.2.4 806 12 45s 4060s 4106s 345MB 306 212 94
texinfo ginstall-info-4.7 1265 46 21s 326s 347s 127MB 304 226 78
texinfo makedoc-4.7 701 18 9s 6s 16s 28MB 55 33 22
texinfo texindex-4.7 1341 44 415s 9336s 9757s 1021MB 604 496 108
wu-ftpd ckconfig-2.5.0 135 0 0s 0s 0s 3MB 3 3 0
wu-ftpd ckconfig-2.6.2 247 10 13s 43s 57s 27MB 53 10 43
wu-ftpd ftpcount-2.5.0 379 13 10s 32s 42s 37MB 115 41 74
wu-ftpd ftpcount-2.6.2 392 14 8s 24s 32s 39MB 118 42 76
wu-ftpd ftprestart-2.6.2 372 23 48s 232s 280s 55MB 142 31 111
wu-ftpd ftpshut-2.5.0 261 5 1s 9s 10s 13MB 83 29 54
wu-ftpd ftpshut-2.6.2 503 26 27s 79s 106s 503MB 232 210 22
wu-ftpd ftpwho-2.5.0 379 13 7s 23s 30s 37MB 115 41 74
wu-ftpd ftpwho-2.6.2 392 14 8s 27s 35s 39MB 118 42 76
wu-ftpd privatepw-2.6.2 353 9 4s 17s 22s 32MB 80 51 29

18 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

To conclude

We proposed an algorithm for static analysis of programs which is:

sound (loop-less model is an overapproximation of the program)
scalable (avoids iterative abstract fixpoint computation )
precise (with configurable precision)
giving you feedback (leaping counter-example)

We implemented it in a tool LoopFrog

(http://www.verify.inf.unisi.ch/loopfrog)

We applied LoopFrog to a wide range of benchmarks and the
result shows that it outperforms the competitors

19 / 20

Loop Summarization using Abstract Transformers



Intro & Background Loop Summarization Experiments Conclusion

Thanks for listening!

Questions ?

20 / 20

Loop Summarization using Abstract Transformers


	Intro & Background
	Loop Summarization
	Experiments
	Conclusion

