
Intro & Background The Synergy Evaluation Conclusion Future Work

The Synergy of Precise and Fast Abstractions
for Program Verification

Natasha Sharygina1,3, Stefano Tonetta2 and Aliaksei Tsitovich1

[1]University of Lugano, Switzerland

[2]Fondazione Bruno Kessler, Trento, Italy

[3]School of Computer Science, Carnegie Mellon University, USA

March 9, 2009

1 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Talk Outline

What fast and precise abstractions mean in context of
CEGAR-based model checking

Synergy algorithm – localization of the precise abstraction

Implementation and Experiments

2 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Software Model

Definition

A Transition System (TS) is a tuple M = 〈V , I ,T 〉, where

V is a set of variables;

I (V) is a formula that represents the initial states;

T (V , V ′) is a formula that represents the transitions.

Execution of a program — path in M that starts at an initial
state.

Counterexample — execution that reaches some “bad” state.

3 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Abstraction

Abstraction is a key technique to scalable program verification.

← Abstraction function α

The opposite to abstraction is called concretization γ

4 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Program Abstraction

Definition

M̂ is abstraction of M with an abstraction function α iff:

every initial state of M corresponds to an initial state of M̂

(if s |= I (V) then ∃ŝ.ŝ |= Î (V̂) ∧ α(s) = ŝ);

every transition of M corresponds to a transition of M̂

(∀t ∈ T if ∃t(s, s ′) then ∃ŝ , ŝ ′. α(s) = ŝ ∧ α(s ′) = ŝ ′ ∧ t̂(ŝ, ŝ ′)).

We also say that M refines M̂ (M � M̂).

Concretization is the mapping in the opposite direction
γ : M̂ → M. It is not always possible, i.e., abstraction might
introduce spurious behaviors, which have no mappings to M.

5 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Spurious behaviors

Spurious transition — a transition t̂ in M̂, which has no
concretization in M (∀t ∈ γ(t̂) : t̂ |= T̂ ∧ t 6|= T).

Spurious path — a sequence of spurious transitions, π̂ in M̂,
which has no concretization in M (∀π ∈ γ(π̂) : π̂ |= T̂ ∧ π 6|= T).

Spurious counterexample — a counterexample in M̂, whose path
π has no concretization in M.

Real counterexample — a counterexample in M̂, which has
concretization in M.

Refinement — an update of M̂, which removes some spurious
behavior.

6 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Abstraction & Refinement

Counterexample-driven Abstraction Refinement (CEGAR)

7 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Predicate abstraction by Graf/Saidi 971

Idea:

Use predicates on data p1(s); ...; pn(s) to cluster states of M

Abstraction function:
α(s) := p1(s); ...; pn(s)

Abstract transition relation T̂ can be:

minimal (precise abstraction)

over-approximated (fast abstraction)

1commonly used in program verification due to its full automation

8 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Precise Abstraction2

T̂α(V̂ , V̂ ′) = ∃V ,V ′ : T (V ,V ′) ∧ α(V) = V̂ ∧ α(V ′) = V̂ ′

Minimal number of abstract transitions (no spurious transitions)

Adding new predicates is enough to refine spurious path

Different computational engines: theorem provers,
SAT/SMT-solvers, mixed BDD/SMT solvers

But... Very slow computation (exponential in the number of
predicates).

Reducing complexity:

Over-approximation makes computation of T̂ faster

2Also known as minimal or existential or exact or eager abstraction

9 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Fast Abstraction3

Usually very fast computation

Many ways to approximate the abstraction:

Cartesian abstraction (loses the relation among predicates)
Predicate partitioning (loses the relation among subsets of
predicates of different clusters)

But:

Introduces spurious transitions (abstraction now contains both
spurious transitions and spurious paths)
Requires more refinement iterations

3Also known as lazy or approximated abstraction

10 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

CEGAR-Loop

Program Abstraction Model Checking No violations

Simulation Real bugRefinement

Counterexample π

Spurious

Key concern:

Large number of abstract-refine iterations makes verification
impractical

11 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Our Solution:
Combination of fast and precise abstraction

Program Abstraction

Start with fast abstraction

Model Checking No violations

Simulation Real bugRefinement

Refine as precise as possible

Counterexample π

Spurious

12 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Components of our algorithm

FastAbstraction : given a set of predicates, Π, and a concrete
transition relation T , computes program over-approximation, T̂Π.

PreciseAbstraction : given a set of predicates, Π, and a concrete
transition relation, T , computes the minimal abstraction T̂Π.

SpuriousTransition (σST): given a path π, maps every
transition t in π to a set of predicates P , s.t. P ⊆ Π and t 6|= T̂P .

SpuriousPath (σSP): given a path π, maps every transition t in π

to a set of predicates P , s.t. π 6|= T̂
σSP(t). Note that Π ⊆ P , i.e.,

SpuriousPath introduces new predicates.

13 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Let’s proceed stepwise

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Choose initial predi-
cates Π and use them
for fast abstraction

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do

π = ModelCheck(α,F);

if π = ∅ then return CORRECT;

else
σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Perform Model Check-
ing and obtain coun-
terexample π (if it ex-
ists)

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Compute spurious tran-
sitions (σST : ∀t ∈ π →
P ⊆ Π ∧ t 6|= T̂P)

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;

else
σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

1 Perform Precise-

Abstraction for
predicates P related
to spurious
transitions ∀t ∈ π.

2 Remove detected
spurious transitions
by refining original
abstraction

Note, All spurious transitions
related to detected predicates
are removed at once!

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do
Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;
end

Otherwise check if π

has any spurious path
(σSP : t ∈ π → Π ⊆
P ∧ π 6|= T̂

σSP(t))

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

The “synergy” algorithm

MixCegarLoop(TransitionSystem M, Property F)
begin

Π = InitialPredicates(F,T);
α = FastAbstraction(T,Π);

while not TIMEOUT do
π = ModelCheck(α,F);

if π = ∅ then return CORRECT;
else

σST = SpuriousTransition(π);

if σST 6= ∅ then
foreach t ∈ π do

C = PreciseAbstraction(T,σST (t));

α = α ∧ C ;
else

σSP = SpuriousPath(π);

if σSP 6= ∅ then return INCORRECT;
else

foreach t ∈ π do

Π = Π ∪ σSP (t);
C = PreciseAbstraction(T,σSP (t));

α = α ∧ C ;

end

1 Add new predicates
to Π from
SpuriousPath(π).

2 Perform Precise-

Abstraction for
predicates P related
to transitions
∀t ∈ π.

3 Remove spurious
path by refining the
original abstraction

14 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Advantages of our algorithm

Summary:

Computes abstraction quickly but keeps it precise enough to avoid
too many refinement iterations

Expensive precise abstraction is limited to a small number of
predicates.

Multiple spurious behaviors are removed at each refinement
iteration (reduces CEGAR iterations)

Synergy can be localized to some parts of the program (for every
location of the control-flow graph)

15 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Implementation

Synergy is implemented in our software model checker, SATABS:

FastAbstraction— computation of the weakest precondition;

PreciseAbstraction— enumeration of possible transitions by
means of a SAT solver;

SpuriousTransition— a SAT solver is used to check if a
transition is spurious; if it is, UNSAT proof is used to find the
relevant predicates;

SpuriousPath— the weakest preconditions of the current
predicates are computed along the transitions of the spurious path
to find a set of current and new predicates

16 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Client/server shopping agent4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7

T
im

e
in

 s
ec

on
ds

Number of client nodes

WP
SATQE
NewST
NewSP
NewST+NewSP

WP – weakest-precondition-based abstraction; SATQE – SAT-based existential

abstraction; NewST – refined abstraction to remove spurious transitions;

NewSP – refined abstraction to remove spurious path.

4This example is particularly interesting because the fast abstraction produces a
number of spurious transitions exponential in the number of predicates.

17 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Client/server shopping agent4

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7

N
um

be
r

of
 it

er
at

io
ns

Number of client nodes

WP
SATQE
NewST
NewSP
NewST+NewSP

WP – weakest-precondition-based abstraction; SATQE – SAT-based existential

abstraction; NewST – refined abstraction to remove spurious transitions;

NewSP – refined abstraction to remove spurious path.

4This example is particularly interesting because the fast abstraction produces a
number of spurious transitions exponential in the number of predicates.

17 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Results

As expected, SATQE does not perform efficiently on large real
programs because of the large number of predicates involved.

Although NewSP outperforms SATQE, it still generates too many
predicates and fails in scaling against NewST and WP

The most interesting — comparison between WP and NewST, which
gives a deeper understanding the advantage of our techniques.

18 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Comparison of WP and NewST
on a benchmark suite by Ku et. al

 2000

 4000

 6000

 8000

 10000

 2000 4000 6000 8000 10000

N
ew

S
T

, t
im

e
in

 s
ec

on
ds

WP, time in seconds

Ku et al. benchmark suite [25]

19 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Comparison of WP and NewST
on a benchmark suite by Ku et. al

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160 180 200

N
ew

S
T

, n
um

be
r

of
 it

er
at

io
ns

WP, number of iterations

Ku et al. benchmark suite [25]

19 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

To conclude:

A new abstraction refinement technique that combines precise and
approximated abstraction.

Our approach outperforms both precise and imprecise techniques
and reduces the number of CEGAR iterations.

Implemented and evaluated on a number of benchmarks —
http://www.verify.inf.unisi.ch/projects/synergy

20 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Future Work

1 Integrate synergy with interpolation-based approaches for predicate
discovery

2 Investigate trade-offs between precise and approximated approaches
in the context of purely interpolation-based model checking

21 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

Intro & Background The Synergy Evaluation Conclusion Future Work

Thanks for listening!

Questions ?

22 / 22

The Synergy of Precise and Fast Abstractions , for Program Verification

	Intro & Background
	The Synergy
	Evaluation
	Conclusion
	Future Work

