
eVolCheck: Incremental Upgrade Checker for C?

Grigory Fedyukovich1, Ondrej Sery1,2, and Natasha Sharygina1

1 University of Lugano, Switzerland, {name.surname}@usi.ch
2 D3S, Faculty of Mathematics and Physics, Charles University, Czech Rep.

Abstract Software is not created at once. Rather, it grows incrementally version
by version and evolves long after being first released. To be practical for software
developers, the software verification tools should be able to cope with changes.
In this paper, we present a tool, eVolCheck, that focuses on incremental verifi-
cation of software as it evolves. During the software evolution the tool maintains
abstractions of program functions, function summaries, derived using Craig inter-
polation. In each check, the function summaries are used to localize verification
of an upgrade to analysis of the modified functions. Experimental evaluation on a
range of various benchmarks shows substantial speedup of incremental upgrade
checking of eVolCheck in contrast to checking each version from scratch.

1 Introduction

Software is rarely stable. Not only it gradually evolves during its development, but
it is also subject to changes after it is released (e.g., bug fixes, component upgrades,
platform changes, etc.). This evolution is an inherent part of software development and
as such, it should be reflected also by the software verification tools. With this in mind,
we developed a tool called eVolCheck, which focuses on incremental verification of
software written in C.

The eVolCheck tool is a bounded model checker (BMC), which was specifi-
cally designed to handle incremental changes by focusing on the actual changes and to
avoid resorting to the re-verification of the updated systems from scratch as most tools
have to do in the presence of changes. In particular, it uses interpolation-based func-
tion summaries to localize and thus speedup the checks of new versions of a software.
Concretely, eVolCheck maintains over-approximating summaries of all the program
functions. After a change, it first attempts to verify that the old summaries are still valid
for the changed program functions. Since this check considers only code of the func-
tion bodies, its old summary and potentially summaries of its callees, it is very local
and thus it tends to be computationally inexpensive. If it succeeds, the upgrade is safe.
Otherwise, the check is propagated to the callers of the modified functions. When the
summary of the call tree root is shown to be violated, a real error is found and it is re-
ported to the user along with an error trace. After each successful check, any invalidated
summaries are regenerated so that they are ready for the check of the next version. In
addition, eVolCheck features a counter-example guided refinement to deal with too
coarse summaries during the checks.

? This work is partially supported by the European Community under the call FP7-ICT-2009-5
— project PINCETTE 257647.



The upgrade checking algorithm was originally described in [18] along with a dis-
cussion on its correctness. This paper focuses on the actual implementation of the
eVolCheck tool, including an Eclipse plug-in, which facilitates its use, together
with details of its industrial and academic applications.

The paper is structured as follows. In Section 2, we review the theoretical back-
ground of the algorithm with references for more detailed explanation. Section 3 de-
scribes the architecture of the eVolCheck tool together with the essential implemen-
tation details, while Section 4 focuses on the usage of the tool and its integration into
Eclipse. In Section 5 we present experimental evaluation on various benchmarks.
We list the related work in Section 6 and conclude in Section 7.

2 Background Theory

This section focuses on the theoretical background of the upgrade checking algorithm
which is core of eVolCheck.

Upgrade checking. During the software evolution, eVolCheck maintains over-
approximations of input/output behaviors of all functions in the code, i.e., function
summaries. Initially, the function summaries are generated during a bootstrapping run,
which is equivalent to the standalone verification and implements the approach of [16].
Then, the function summaries are validated (some potentially replaced) during each
successful upgrade check.

In each check, eVolCheck first identifies the set of modified functions on the syn-
tactical level. For this purpose, we developed a tool called goto-diff which effec-
tively detects the semantic changes (more details are in Section 3). Then eVolCheck
attempts to show that the old function summaries are still valid over-approximations
of the behavior of the modified functions (Stage 1 in Fig. 1). These are local and thus
cheap checks. As an option of eVolCheck, to further speed up the check, all the valid
summaries may be used in this check to abstract the corresponding function calls.

If the local checks succeed, the upgraded version is safe. If not, it can be either be-
cause the valid summaries of the called functions are not precise enough, in which case
they are replaced by their precise representation, by performing downward refinement
(Stage 2 in Fig. 1). Or it can be because the summary is indeed violated during the
change, in which case the check is propagated to the parent functions, by performing
upward refinement (Stage 3 in Fig. 1). This is iterated until either the check succeeds
(Stage 4 in Fig. 1) on some level of the call tree, or the check fails for the main function
in the root of the call tree. In the former case, new valid summaries are generated for
the subtree, while in the latter case, a real error is identified and reported to the user.

As a result eVolCheck exploits the locality of the changes, which makes it a
valuable tool for efficient verification of fine-grained changes that have limited impact
throughout the code. Of course, should the change be extensive and span the entire code
base, naturally, the check can become expensive. This is in line with the envisioned po-
sition of the tool in the development process to check changes on the level of individual
commits rather than major revisions.

Interpolation. The upgrade checking algorithm is based on over-approximating
function summaries, however, it is not strictly tied to any particular form of abstraction



Stage 1: Re-verify summary Stage 2: Downward refinement

main

f3

f7
f9

f6
f8f2

f1

f5f4

main

f3

f7
f9

f6
f8f2

f1

f5f4

Function f6 was modified.
While re-checking its summary (dashed box)

the valid summary of f8 is also used

If the check of f6’s summary fails,
possibly due to imprecision of f8’s summary,
precise representation of f8 is used instead of

its summary and the check is repeated

Stage 3: Upward refinement Stage 4: Renew summaries

main

f3

f7
f9

f6
f8f2

f1

f5f4

main

f3

f7
f9

f6
f8f2

f1

f5f4

If f6’s summary is proven invalid,
i.e., the downward refinement did not help,

the validity check is propagated to f3

If the check succeeds, i.e., the summary of f3
is shown valid, the replacement summaries are
generated for the invalid summaries of f6, f8

Figure 1: eVolCheck principle

or means to derive the summaries. Of course, the particular summaries need to satisfy
certain properties, e.g., the correctness Properties 1 and 2 (formally defined later in
this Section), used to show correctness of the algorithm. Our implementation of the
algorithm in eVolCheck uses function summaries derived by Craig interpolation [5].
In a nutshell, given two formulas A and B such that A ∧ B is unsatisfiable, a Craig
interpolant of A and B is a formula I , s.t., A =⇒ I , and I ∧B is unsatisfiable, and I
contains only the shared free variables of A and B.

Intuitively, interpolants are an over-approximation of formula A still capturing the
conflict with B, while using only the shared language of (A,B). Craig interpolants are
usually constructed from a resolution proof of unsatisfiability of A ∧ B and they have
numerous applications in model checking (see, e.g., [11]). Note that interpolants of dif-
ferent strength (considering implication relation) can be obtained using different inter-
polation algorithms. In practice, additional properties of multiple interpolants generated
from a single unsatisfiable formula are often required, resulting in path interpolants and
tree interpolants. Note that it is often possible to ensure these additional properties by
careful construction of interpolants from the same proof of unsatisfiability [15].



Definition 1. Let A ∧ B ∧ C be an unsatisfiable formula and IA, IB , IAB be Craig
interpolants of (A,B ∧C), (B,A∧C), and (A∧B,C) respectively. The interpolants
IA, IB , IAB have the tree interpolant property iff IA ∧ IB =⇒ IAB .

In the implementation of eVolCheck algorithms, the tree interpolant property is
essential as it must be satisfied to maintain valid function summaries and to ensure the
correctness of the overall local upgrade checking.

Function summarization. Standard BMC creates a monolithic formula not well
suited for interpolation, as symbols of different scopes get mixed in the formula both
due to the encoding and optimizations. To solve this problem, we create a so called par-
titioned bounded model checking formula (PBMC formula) that isolates variables of
functions in separate conjuncts of the formula and shares only the interface symbols of
functions. That is input and output parameters3 and a few helper symbols, as further ex-
plained in [16,17]. In particular, for each function call f , there is a helper propositional
variable errorf , that evaluates to true when an error (assertion violation) is reachable in
that function given the valuation of its input parameters.

When the PBMC formula is unsatisfiable, it is easy to partition it for interpolant
generation for each function call, so that A corresponds to the function implementa-
tion (including its callees) and B to the calling context. The generated interpolants are
then over-approximations of the functions input/output behavior and contain only the
interface variables of the functions. In other words, the interpolants constitute over-
approximating function summaries.

Correctness of upgrade checking. The correctness of the local upgrade checking
algorithm is based on maintaining the following two properties:

errorfmain ∧ σfmain → ⊥ (1)

Given each function call f and its children calls g1, . . . , gn:

σg1 ∧ . . . ∧ σgn ∧ φf → σf (2)

Property 1 claims that the entire program is safe by the means of the summary of the
main function, σfmain , and its inconsistency with the errorfmain capturing reachability of
an error in the call tree of main, i.e., the entire program.

Property 2 requires that the summaries of callees (σgi ) along with precise represen-
tation of the body of the caller (φf ) are captured by the summary of the caller (σf ). In
other words, that the over-approximations of the callees are not too weak to be captured
by the over-approximation of the caller.

With these two properties, correctness of the upgrade checking algorithm is easy
to see. It suffices to recursively apply Property 2 to replace summaries occurring in
Property 1. The results state that the precisely encoded program is error free.

In [18], we showed that the properties are established during the initial bootstrap-
ping run, when all the summaries are generated, and that they are reestablished after
each successful run of the upgrade checking algorithm. The proof relies on the tree
interpolant property. This becomes transparent when the inductive nature of both Prop-
erty 2 and Def. 1 is observed side by side.

3 Note that accessed global variables are handled as additional input/output arguments.



Figure 2: eVolCheck architecture overview

3 Tool Architecture

This section presents the architecture of the eVolCheck tool as depicted in Fig. 2. The
tool uses the goto-cc compiler provided by the CProver framework4. The goto-cc
compiler produces an input model of the source code of C program (called goto-binary)
suitable for automated analysis. Each version of the analyzed software is compiled us-
ing goto-cc separately. The resulting models are stored for future checks.

eVolCheck. The eVolCheck tool itself consists of a comparator, a call graph
traversal, an upward refiner and a summary checker. The comparator identifies the
changed functions calls. Note that if a function call was newly introduced or removed
(i.e., the structure of the call graph is changed), it is considered as change in the parent
function call. The call graph traversal attempts to check summaries of all the modi-
fied function calls bottom up. The upward refiner identifies the parent function call to
be rechecked when a summary check fails. The summary checker performs the actual
check of a function call against its summary. In turn, it consists of a PBMC encoder
that takes care of unwinding loops and recursion, generation of SSA form and bit-
blasting, a solver wrapper that takes care of communication with the solver/interpolator
(OpenSMT [2]), and a downward refiner that identifies ancestor functions to be refined
when a summary check fails possibly due to imprecise representation of the ances-
tor function calls. Additionally, there are two optional optimizations in eVolCheck,
namely slicing and summary optimization. The first can reduce the size of the SSA form
using slicing w.r.t. variables, irrelevant to the properties being checked. The second can
compare the existent summaries for the same function and the same bound, and keep
the more precise one.

Goto-diff. For comparing the two models, of the previous and the newly upgraded
versions, we implemented a tool called goto-diff. The tool accepts two goto-binary
models and analyzes them function by function. the longest common sub-sequence al-
gorithm is used to match the preserved instructions and to identify the changed ones.

4 www.cprover.org

www.cprover.org


It is crucial that goto-diff works on the level of the models rather then on the
level of the source files. This way, it is able to distinguish some of the inconsequential
changes in the code. Examples include changes in the order of function declarations
and definitions, text changes in comments and white spaces, and simpler cases of refac-
toring. These changes are usually reported as semantic changes by the purely syntactic
comparators (e.g., the standard diff tool). Moreover, as goto-diffworks on the goto-
binary models (i.e., after the C pre-processors) it correctly interprets also changes in the
pre-processor macros.

Solver and interpolation engine. As mentioned in Section 2, to guarantee cor-
rectness of the upgrade check, eVolCheck requires a solver that is able to generate
multiple interpolants with the tree interpolant property from a single satisfiability query.
For this reason, we use the interpolating solver, OpenSMT, which creates multiple in-
terpolants from the same unsatisfiability proof and provides API for convenient spec-
ification of the partitions corresponding to the functions in the call tree. Currently, we
use OpenSMT in the SAT solving mode and bit-blast all formulas to the propositional
level. As a result, eVolCheck provides bit-precise reasoning.

Eclipse plug-in. In order to make the tool as user-friendly as possible, we integrated
eVolCheck in the Eclipse development environment in the form of a plug-in. For a
user, developing a program using the Eclipse environment, the eVolCheck plug-in
makes it possible to verify changes as part of the development flow for each version of
the code. If the version history of the program is empty, the bootstrapping (initial veri-
fication) is performed first. Otherwise, eVolCheck verifies the program with respect
to the last safe version. Graphical capabilities of Eclipse contain a variety of helpers,
allowing configuration of the verification environment.

The plug-in is developed using Plug-in Development Environment (PDE), a tool-
set to create, develop, test, debug, build and deploy Eclipse plug-ins. It is built as
an external jar-file, which is loaded together with Eclipse. The plug-in follows the
paradigm of Debugging components, and provides the separate perspective, containing
a view of the source code, highlighted lines, reported by goto-diff, visualization of
the error traces and change impact, computed for each upgrade checking of the program.

At the low level, the plug-in delegates the verification tasks to the corresponding
command line tools goto-cc, goto-diff and eVolCheck. It maintains a database
and external file storage to keep goto-binaries, summaries and other meta-data of each
version of each program verified earlier.

4 Tool usage

The eVolCheck can be run from a command line as well as using the Eclipse plug-
in. Its Linux binaries, benchmarks used for evaluation, a tutorial explaining how to use
eVolCheck and explanation of the most important parameters are available on-line
for other researchers5.

The following shows the example of usage of eVolCheck from a command line 6:
5 http://www.verify.inf.usi.ch/evolcheck.html
6 the running example can be found at http://www.inf.usi.ch/phd/fedyukovich/
evolcheck.lin32.tar.gz

http://www.verify.inf.usi.ch/evolcheck.html
http://www.inf.usi.ch/phd/fedyukovich/evolcheck.lin32.tar.gz
http://www.inf.usi.ch/phd/fedyukovich/evolcheck.lin32.tar.gz


1. Create a model of the base version of the program by running the goto-cc
compiler. Choose one of the *_orig.c files in examples directory and type:

~/evolcheck$ ./goto-cc examples/valid/change_valid_orig.c
-o examples/valid/change_valid_orig.out

The file examples/valid/change_valid_orig.c is the input source code
and examples/valid/change_valid_orig.out is the resulting goto-binary.
Note that the upgrade checking environment should be prepared for analysis by cleaning
the repository with ~/evolcheck$ rm __summaries __omega before per-
forming this step.

2. Run eVolCheck to perform the initial bootstrapping check of the program (pa-
rameter --init-upgrade-check):

~/evolcheck$ ./evolcheck --init-upgrade-check --unwind 10
examples/valid/change_valid_orig.out

Note that the parameter --unwind <N> is required to specify the maximal number
of unwindings of each loop.

3. Check the eVolCheck outputs. The following message at the end of the eVolCheck
output indicates either that the program is safe:

ASSERTION(S) HOLD(S).

or that the program is buggy:

ASSERTION(S) DO(ES)N’T HOLD.
A real bug found.

In the latter case, a corresponding error trace manifesting the bug is part of the out-
put as well. After a successful bootstrapping check, the summaries and their map-
ping to the calltree are created and stored for the subsequent upgrade checks in files
__summaries and __omega respectively.

4. When the program is upgraded, goto-binary model of the new version is created
again using the goto-cc compiler. Run it for the file corresponding *_upgr.c file
chosen in Step 2:

~/evolcheck$ ./goto-cc examples/valid/change_valid_upgr.c
-o examples/valid/change_valid_upgr.out

5. With the goto-binary model of the new version of the program, the actual upgrade
check is performed (parameter --do-upgrade-check <file>) as follows:

~evolcheck$ ./evolcheck --do-upgrade-check
examples/valid/change_valid_upgr.out
--unwind 10 examples/valid/change_valid_orig.out



Note that the parameter --unwind <N> is required to specify the same unwinding
number as for the original check.

6. Check the eVolCheck output. There are several possible cases. Either the two
programs have identical models, i.e., no or only simple syntactical changes occurred
(examples for this case are located in the examples/ident folder), resulting in the
following output: The program models are identical.

Or the upgraded program was changed but it remains correct (examples are located
in the examples/valid folder), resulting in the following message for each checked
function summary: ... summary was verified.

Or the upgraded program is buggy (examples from examples/not_valid).
The corresponding output contains the following message for the summary of the func-
tion main:

Old summary is no more valid.
...
summary cannot be renewed. A real bug found.

7. Additional information about the usage of the tool can be found simply by typing

~/evolcheck$ ./evolcheck --help

Eclipse plug-in. Nowadays, IDEs form an essential part of software development
tool chains. Therefore, we integrated eVolCheck into Eclipse, which is one of
the most widely used IDE. Our plug-in hides some of the implementation details and
provides much more comfort compared to the command line tool. As expected, the
actual use of the plug-in follows the command line scenario.

Figure 3: eVolCheck configuration window



Figure 4: eVolCheck invokes goto-diff (changed lines are highlighted)

Figure 5: eVolCheck error trace



Figure 6: eVolCheck successful verification report

1. The user develops a current version of the program. In order to specify properties,
the assertions should be placed in the code or generated automatically by the tool. The
examples of the default properties are division by zero, pointers dereferencing, array
out-of-bounds checks.

2. The user opens the Debug Configurations window and chooses the file(s) to be
checked and specifies the unwinding bound (Fig. 3). Eclipse then automatically cre-
ates the model (goto-binary) from the selected source files and keeps working with it.

3. The plug-in searches for the last safe version of the current program (goto-binary
created from the same selection of source files and the same unwinding number). If
no such a version is found, it performs the initial bootstrapping check. Otherwise,
plug-in restores the summaries and outdated goto-binary from the subsidiary storage.
eVolCheck then identifies the modified code by comparing call trees for both the cur-
rent and the previous versions. The modified lines of code are marked (Fig. 4) for the
user review. Note that modified code may also contain some new properties, manually
or automatically inserted. These properties will be also considered in the next step.

4. Then the localized upgrade check is performed. If it is unsuccessful, the plug-in
reports violation to the user and provides an error trace (Fig. 5). The user can traverse
the error trace line by line in the original code and see the valuation of all variables in all
states along the error-trace. If desired, the user fixes the reported errors and continues
from Step 3.

5. In case of successful verification, the positive result is reported (Fig. 6). The
plug-in stores the set of valid and new summaries and the goto-binary in the subsidiary
storage. In addition, graphical visualization of the change impact in the form of a col-
ored call-tree is available (Fig. 7).



Figure 7: eVolCheck change impact

5 Evaluation

In addition to the standalone use of eVolCheck (as described in Section 4), the tool
is used as a static analysis engine within the hybrid static/dynamic upgrade checking
platform developed as part of the Pincette project7. The platform has been applied to
analysis of software developed by Pincette’s industrial partners, among which there are
the VTT company with its control software for a maintenance robot for the ITER fu-
sion reactor; the IAI company with the software for a stabilized optical device payload
(MSEOS) of their unmanned airborne vehicles; and the ABB company with the soft-
ware of their power grid protection units. As part of the project, eVolCheck is also
integrated in the CCRT platform 8, a collaborative code review tool developed at IBM.

The eVolCheck tool was validated on a wide-range of various benchmarks among
which are the validation cases, provided by the Pincette project collaborators. In partic-
ular, it was used to verify the C part of the implementation of the DTP2 robot controller,
developed by the VTT company. It was also applied to the ABB validation cases on a
code taken from the project implementing a core of a feeder protector and controller.
The code originates from an embedded software used in the ABB hardware module.
This is a large scale project containing many sub-projects which implement various
functions of the feeder device. The total number of lines in the overall code is in mil-
lions. Pre-processing the code with the goto-cc tool generated a collection of goto-
binaries (each one represents a separate source file, estimated by thousands lines of
code) that were then processed with eVolCheck focusing the validation to particular
functional sub-projects.

7 http:/www.pincette-project.eu
8 CCRT is a proprietary tool of IBM

http:/www.pincette-project.eu


Table 1: Experimental evaluation
Benchmark Bootstrap Upgrade check

Name Total [s] Itp [s] Total [s] Diff [s] Itp [s] Speedup Result ISR
ABB_A 8.644 0.008 0.04 0.009 0.003 220x SAFE 0/7
ABB_B 6.236 0.009 0.006 0.006 — 935x SAFE 0/9
ABB_C 8.532 0.015 0.059 0.008 0.003 157x SAFE 0/8
VTT_A 0.512 0.001 0.006 0.006 — 85.5x SAFE 0/9
VTT_B 0.514 0.001 0.031 0.006 — 0.7x BUG 1/9
euler_A 12.56 0.099 0.179 0.001 0.016 70.4x SAFE 1/6
euler_B 12.547 0.095 2.622 0.001 0.031 4.74x SAFE 3/5
life_A 13.911 1.366 0.181 0.001 <0.001 77.0x SAFE 0/5
life_B 13.891 1.357 6.774 0.001 — 0.31x BUG 5/5
arithm_A 0.147 0.007 0.355 0.001 — 0.39x BUG 3/3
diskperf_A 0.167 0.001 0.024 0.008 <0.001 5.79x SAFE 0/21
diskperf_B 0.137 0.001 0.062 0.009 — 2.25x BUG 3/21
floppy_A 2.146 0.229 0.422 0.202 <0.001 5.02x SAFE 0/226
floppy_B 2.183 0.237 2.277 0.206 — 0.82x BUG 79/226
kbfiltr_A 0.288 0.011 0.081 0.023 0.001 3.40x SAFE 1/63
kbfiltr_B 0.320 0.009 0.088 0.023 0.001 1.85x SAFE 3/63

To demonstrate the applicability and advantages of eVolCheck, we provide eval-
uation details of several test cases. Five of them (ABB_n, VTT_n) were provided by
the Pincette project partners for which the changes were extracted from the project
repositories. Six other benchmarks were derived from Windows device driver library
(diskperf_n, floppy_n, kbfiltr_n). The changes (with different level of im-
pact, from adding an irrelevant line of code to moving a part of functionality between
functions) were introduced manually there. Roughly, all benchmarks are hundreds to
thousands lines of code each. The rest of the benchmarks are the masters’ student
projects conducted at University of Lugano.

Table 1 represents results of the experiments. Each benchmark is shown in a separate
row, which summarizes statistics about the initial verification and verification of an up-
grade. Time (in seconds) for running the syntactic difference check (Diff) and for gen-
eration of the interpolants (Itp) represents the computational overhead of the upgrade
checking procedure, and included in the total running time (Total) of eVolCheck.
Note that interpolation can not be performed at the buggy examples (marked as "—"),
for which the corresponded PBMC formula is satisfiable. To show advantages of our
upgrade checking approach, for each change we calculated the speedup (Speedup) of
the upgrade check versus standalone verification of the changed code from scratch, per-
formed only for the sake of comparison and thus not shown in the table. Finally, the
posteriori estimation of the upgrade check complexity is shown in the row ISR (Invalid
Summaries Ratio). This ratio represents the number of invalid summaries (due to the
change) with respect to the number of nodes in the call tree of the verified program.

Discussion. Our evaluation demonstrates good performance of eVolCheck. In
particular, the experiments show high efficiency of upgrade checking for safe upgrades
since they result in a small number of refinements (both, upward and downward). This
generally leads to a small number of invalidated summaries, as witnessed by the cor-



responding ISR (see, for example, the ABB_n cases, where summaries of all changed
functions were proven valid). It is less efficient (for some tests) in case of buggy up-
grades, since bugs frequently (as expected) effect larger portions of the program. In clas-
sical model checking, confirming the absence of bugs is usually more expensive (since
it requires the full state-space search) then detecting the bugs (where the search can
be terminated once the bug is detected) and we believe that the fact that eVolCheck
works so well to confirm safety is very useful for routine analysis of upgrades.

The use of goto-diff has been very useful since it managed to detected many test
cases with small syntactic changes which did not require running the main eVolCheck
procedures. For example, in VTT_A and ABB_B, the comparator proved that the models
are identical, so no further checking was needed.

As expected, in the majority of the experiments, the localized upgrade check pro-
vided by eVolCheck outperforms the verification from scratch, which is indicated
by speedup > 1. Moreover, in many instances (usually on large industrial cases) the
speedup is large, which demonstrates good efficiency and usefulness of the tool.

6 Related Work

The general idea of interpolation-based function summarization was studied in various
projects including earlier work of eVolCheck authors [12,13,1,16,8]. For instance,
the authors of [8] generate sequence of inductive interpolants as summaries of recursive
functions to be used in Hoare-style verification of a single (not upgraded) program. To
our knowledge, there is no implementation and upgrade checking is not considered. A
tool called FunFrog [17] is an implementation of the idea from [16]. To the best of
our knowledge, eVolCheck is the first tool which further extends interpolation-based
function summaries to incremental checking of software upgrades.

Approaches [7,19] also employ bottom-up call graph traversal. In [19], the authors
start from possible error location in order to prove its unreachability in a context of
a current function. If not proven, they expand the context to the caller functions and
repeat the check. They have an implementation for Java programs, but do not consider
an upgrade checking case.

Previously, other researchers attempted to reuse (parts of) models constructed dur-
ing verification of the base version to speed up verification of software upgrades. Either,
the models constituted an entire reachable abstract state space [9,4] that was revalidated
after a change. Alternatively, behavioral models of different components of the soft-
ware [3] were constructed (by employing techniques for learning regular languages)
and then substitutability between the original and the altered components was analyzed
after each change. In comparison, eVolCheck stores information corresponding to
the function calls. We argue that this is a natural abstraction boundary that is more sta-
ble than the abstract state space and at the same time more fine-grained than the entire
software components.

There are also approaches that attempt to show equivalence of the original and the
upgraded software [14,10,7]. The SymDiff tool [10] decides conditional partial equiv-
alence, i.e., equivalence under certain input constraints. Moreover, SymDiff also al-
lows automated extraction of the constraints and reports them to the user. The goal of



differential symbolic execution [14] is to show equivalence of the two versions using
symbolic execution. If the versions are not equivalent, a behavioral delta is constructed
as a feedback for the user. In [7], a technique called regression verification for decid-
ing partial equivalence of programs using model checking is introduced. As well as
eVolCheck, regression verification starts with a syntactic difference check identify-
ing the modified functions. Then the call graph is traversed starting from the leaves.
During the traversal, old and new versions of each visited and possibly affected func-
tion is checked for equivalence. In this check, any called functions are abstracted using
the same uninterpreted functions.

If we compare these approaches to eVolCheck, the fundamental difference is that
eVolCheck does not care about equivalence. It only checks that no errors sneak in the
code with the upgrade. This means that the equivalence-based approaches report all the
nonequivalent behavior to the user, flooding the user with information in the process.
In contrast, eVolCheck reports only the bugs added to the code, which we believe
the users are really interested in. Another related benefit is that eVolCheck may skip
processing parts of the code base (which could be hefty) that do not affect correctness
of the upgrade.

In the context of compositional directed testing (a.k.a. white-box fuzzing), some
authors study effects of upgrades on function summaries [6] with the goal to identify
the affected summaries unusable for analysis of the new version. With the unusable
summaries removed, the preserved ones are employed in the actual analysis as a second
step. When compared, eVolCheck uses over-approximative interpolation-based func-
tion summaries and performs the actual verification during the analysis not separately.

7 Conclusion

This paper presented the incremental upgrade checker, eVolCheck along with its in-
tegration into the Eclipse development environment. This is the first tool which uses
interpolation-based function summaries to localize and speed up the upgrade check.
The tool was evaluated on a range of industrial and academic examples, and in the most
cases showed notable speedup with relation to verification from scratch. In future, we
would like to explore the possibility to use the information regarding the failed and suc-
cessful intermediate summary checks in order to guide the user in finding the root cause
of the error, e.g., by emphasizing portions of the reported error trace corresponding to
the failed intermediate summary checks. In addition, we consider integration with a
versioning system (e.g., SVN), which would allow further integration into the software
development process.

Acknowledgments. We thank the following people for their valuable contribution
during the work on this paper: Murillo Miranda Cristina Maria for her implementation
work on the Eclipse plug-in, Antti Hyvärinen for his comments on usability and
correcting our English, Michael Tautschnig for his help with CProver and goto-cc
adjustments, and Pincette validators for assistance with the industrial test cases.



References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Whale: An Interpolation-Based Algorithm for
Inter-procedural Verification. In: VMCAI ’12. LNCS, vol. 7148, pp. 39–55 (2012)

2. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In: Tools and
Alg. for Con. and Anal. of Sys. (TACAS ’10). LNCS, vol. 6015, pp. 150–153 (2010)

3. Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Dynamic Component Substitutability Anal-
ysis. In: FM ’05. LNCS, vol. 3582, pp. 512–528. Springer (2005)

4. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms for inter-
procedural analysis of safety properties. In: CAV ’05. LNCS, vol. 3576, pp. 449–461 (2005)

5. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. of Symbolic Logic pp. 269–285 (1957)

6. Godefroid, P., Lahiri, S.K., Rubio-González, C.: Statically Validating Must Summaries for
Incremental Compositional Dynamic Test Generation. In: SAS ’11. LNCS, vol. 6887 (2011)

7. Godlin, B., Strichman, O.: Regression verification. In: DAC ’09. pp. 466–471 (2009)
8. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Principles of Prog. Lan-

guages (POPL ’10). pp. 471–482. ACM (2010)
9. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme Model Checking. In:

Verification: Theory and Practice. LNCS, vol. 2772, pp. 332–358 (2003)
10. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: Symdiff: a language-agnostic se-

mantic diff tool for imperative programs. In: CAV ’12. LNCS, vol. 7358, pp. 712–717 (2012)
11. McMillan, K.L.: Applications of Craig Interpolation in Model Checking. In: Tools and Alg.

for Con. and Anal. of Sys. (TACAS ’05). pp. 1–12. LNCS (2005)
12. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Computer Aided Verification (CAV

’06). pp. 123–136. LNCS (2006)
13. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Computer Aided

Verification (CAV’ 10). pp. 104–118. LNCS (2010)
14. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic execution.

In: FSE ’08. pp. 226–237 (2008)
15. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model checking. In:

Computer Aided Verification (CAV ’12). LNCS, vol. 7358, pp. 193–209 (2012)
16. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries in

Bounded Model Checking. In: HVC ’11. LNCS, vol. 7261, pp. 257–272 (2011)
17. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: Bounded Model Checking with

Interpolation-based Function Summarization. In: ATVA ’12. LNCS, vol. 7561, pp. 203–207
(2012)

18. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental Upgrade Checking by Means of
Interpolation-based Function Summaries. In: FMCAD ’12. pp. 114–121. ACM (2012)

19. Sinha, N., Singhania, N., Chandra, S., Sridharan, M.: Alternate and learn: Finding witnesses
without looking all over. In: CAV. LNCS, vol. 7358, pp. 599–615 (2012)


	 eVolCheck: Incremental Upgrade Checker for C

