
Flexible Interpolation with Local Proof Transformations

Roberto Bruttomesso Simone Rollini Natasha Sharygina Aliaksei Tsitovich

Università della Svizzera Italiana
Lugano, Switzerland

{roberto.bruttomesso,simone.fulvio.rollini,natasha.sharygina,aliaksei.tsitovich}@usi.ch

ABSTRACT

Model checking based on Craig’s interpolants ultimately re-
lies on efficient engines, such as SMT-Solvers, to log proofs
of unsatisfiability and to derive the desired interpolant by
means of a set of algorithms known in literature. These algo-
rithms, however, are designed for proofs that do not contain
mixed predicates. In this paper we present a technique for
transforming the propositional proof produced by an SMT-
Solver in such a way that mixed predicates are eliminated.
We show a number of cases in which mixed predicates arise
as a consequence of state-of-the-art solving procedures (e.g.
lemma on demand, theory combination, etc.). In such cases
our technique can be applied to allow the reuse of known
interpolation algorithms. We demonstrate with a set of ex-
periments that our approach is viable.

1. INTRODUCTION
Since the seminal work of McMillan [18–20] Craig’s in-

terpolants [10] have been extensively applied in SAT-based
Model Checking and Predicate Abstraction [16]. Formally,
given a pair of mutually unsatisfiable formulæ 〈A,B〉 an in-
terpolant I is a formula such that A ⇒ I, B ∧ I ⇒ ⊥, and
I is defined on the common language of A and B. The in-
terpolant I can be thought of as an over-approximation of
A that still conflicts with B.

There exists a number of the state-of-the-art approaches
for the automated generation of interpolants. Pudlák [23]
studies it in the context of propositional logic. McMillan [19]
proposes an alternative method that also handles the quantifier-
free theories of uninterpreted functions, linear arithmetic,
and their combination.

Yorsh and Musuvathi [24] generalize McMillan’s proce-
dure by proposing an interpolant-generation technique for
theory combination. The method relies on the Nelson-Oppen
procedure [22] to compute partial interpolants using the
communication of interface equalities between the reason-
ers for the theories to combine. Also, they show how to
extend Pudlák’s method to quantifier-free theories, provid-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ing de facto a modular way for computing interpolants in
the context of SMT-Solvers.

Cimatti et al. [9] propose a set of techniques to efficiently
compute interpolants in SMT for a number of arithmetic
theories (difference logics, utpvi, linear rational arithmetic).
They also show how to adapt delayed theory combination
(DTC) [6] (a flexible variant of the Nelson-Oppen combina-
tion) to obtain interpolants in a union of theories.

The aforementioned state-of-the-art methods [9, 24] com-
pute interpolants in two steps. First, the formula A ∧ B
is solved using an SMT-Solver with proof-logging enabled,
and then the interpolant is derived from the structure of the
resolution proof.

This method, however, requires the proof not to contain
AB-mixed predicates, i.e., predicates defined on symbols
that are local to A and B. However, there is a number
of techniques that (potentially) require the addition of AB-
mixed predicates to the input formula before or during solv-
ing time [1, 3, 6, 21]. These techniques are extensively used
in the state-of-the-art SMT-Solvers.

In this paper we present a technique that rewrites propo-
sitional proofs in such a way that it isolates and removes
AB-mixed predicates. Our method enables the use of off-
the-shelf techniques for solving A ∧ B, and, consequently,
after the proof is transformed, the application of the method
of [24] for computing interpolants.

The proof transformation is based on a set of rules that
locally swap pivots in the propositional proof, so that the
AB-mixed predicates can be isolated and removed. Even
though the application of the rules could in principle lead
to an exponential growth of the proof, we demonstrate by
means of experiments that in practice the size of the trans-
formed proof is comparable (in some cases even inferior) to
the original proof.

The paper is organized as follows. §2 recalls some basic
notions, presents an overview of the approach, and discusses
the related work. §3 describes our proof transformation algo-
rithm. §4 describes a set of examples in which our approach
can be applied. §5 describes experiments that demonstrate
that our proof-transformation approach, in practice, does
not lead to exponential blow-ups in the proof size. §6 draws
the conclusions.

2. PRELIMINARIES
In this paper we shall useA andB to denote two quantifier-

free formulæ in a theory T , for which we would like to com-
pute an interpolant. Theories of interest are equality with
uninterpreted functions EUF , linear arithmetic over the ra-

tionals LRA and the integers LIA, the theory of arraysAX ,
or a combination of theories, such as EUF∪LRA. Variables
that appear only in A or B are called A-local and B-local
respectively. Variables that appear in both A and B are
called AB-common. A predicate is called AB-mixed if it is
defined on both A-local and B-local variables, it is called
AB-pure otherwise. Notice that AB-mixed predicates can-
not appear in A and B. Sometimes we will say that a clause
or a variable is colored A, meaning that it belongs to A.

Example 1. Let A ≡ (a = e ∧ f(a) = c), B ≡ (b =
e ∧ f(b) = d ∧ c 6= d) be two formulæ in the EUF theory.
Variable a is A-local, b is B-local, c, d, e are AB-common (a
predicate a = b would be AB-mixed). An interpolant I for
A ∧B is f(e) = c, which is an AB-pure predicate.

In the following we shall use p, q, r (possibly with sub-
scripts) to denote Boolean variables, s, t to denote liter-
als, α, β, . . . to denote clauses, and C,D, . . . to denote sub-
clauses. The empty clause is denoted by ⊥. We will write
clauses as lists of literals and sub-clauses, omitting the “∨”
symbol, as for instance pqC. We will use the form α ⊆ β
to indicate that α subsumes β, that is the set of literals α
is a subset (note necessarily proper) of the set of literals β.
Also we will assume that clauses do not contain duplicated
literals or both the occurrences of a literal and its negation.
Finally, we use var(s) to denote the variable associated with
the literal s.

2.1 Resolution Proofs
Resolution is the following proof rule:

pC pD
p

CD

Clauses pC and pD are called antecedents, CD is the re-
solvent, and p is the pivot variable. Throughout the paper
we shall use the notion of resolution proof.

Definition 1 (Resolution Proof). A resolution proof
of a clause λ from a set of clauses S is a tree such that (i)
its leaves are clauses in S, (ii) the root is λ, (iii) interme-
diate clauses are derived by means of an application of the
resolution rule.

We say that a proof P is a proof of unsatisfiability if λ ≡ ⊥.
Finally a subproof P ′, rooted in µ, of a proof P is the proof
subtree that derives µ from a subset of leaves of P .

Notice that since we deal with SMT formulæ the variables
in the resolution proof may represent the Boolean abstrac-
tion of a theory predicate in a theory T , such as x+ y < 1.
In this case we say that a variable is AB-mixed if so is the
predicate associated with it.

2.2 Overview and Previous Work
Pudlák shows in [23] a method to compute an interpolant

from a proof of unsatisfiability of a formula in pure proposi-
tional logic. An interpolant can be computed by traversing
the proof, taking into account the color of pivots and leaf
clauses.

Yorsh and Musuvathi present in [24] a generalization of
Pudlák’s method that can compute interpolants for a for-
mula defined modulo a theory T . The leaves of the proof
of unsatisfiability in this case are original clauses as well as

theory lemmata (clauses that encode valid facts in T) in-
volving original predicates, generated by the prover during
the solving process. It is then sufficient to compute a par-
tial interpolant for each theory lemma in order to derive the
global interpolant.

The last technique, for its modularity, finds its natural
implementation within SMT-Solvers [4], tools that combine
SAT-Solvers and domain specific procedures for a theory T
in an efficient way. Cimatti et al. [9] show that interpolant
generation within SMT-Solvers can outperform other known
methods (e.g. [19]), as a result of using optimized domain-
specific procedures for T .

One limitation of the approach of [24] is that theory lem-
mata, appearing in the proof of unsatisfiability, must not
contain AB-mixed predicates. However, several decision
procedures defined for SMT-Solvers heavily rely on the cre-
ation of new predicates during the solving process. Exam-
ples are delayed theory combination (DTC) [6], Ackermann’s
Expansion [1], Lemmas on Demand [21] and Splitting on
Demand [3] (see §4). All these methods may introduce new
predicates, which can potentially be colored as AB-mixed.
In [9] the problem is addressed, only for the case of DTC,

by tweaking the decision heuristics of the solver, in such
a way that it guarantees that the produced proof can be
handled with known methods. In particular they define a
notion of ie-local proofs, and they show (i) how to compute
interpolants for this class of proofs, (ii) how to adapt the
SMT-Solver to produce only ie-local proofs. In [15] the au-
thors relax the constraint on generating ie-local proofs by
introducing the notion of almost-colorable proofs. We argue
that our technique is simpler and more flexible, as different
strategies can be derived with different applications of our
local transformation rules. Also there is no experimental
evidence that method of [15] can be applied in practice.

In this paper we also show how to compute an AB-pure
proof from an AB-mixed one but without interfering with
the internals of the SMT-Solver. Our method is more gen-
eral, i.e., it applies not only to theory combination but to
any approach that requires the addition of AB-mixed pred-
icates (see §4 for a set of examples). We define a set of local
transformations that can effectively modify the proof in such
a way that the generic method of [24] can be applied. In this
way it is possible to achieve a complete decoupling between
the solving phase and the interpolant-generation phase, pro-
vided that an interpolant-generation procedure is available
for a conjunction of input constraints in T .

The sketch of the approach is depicted in Figure 1. The
idea is to move all AB-mixed predicates (in grey) toward the
leaves of the proof (Figure 1b) within maximal AB-mixed
subproofs.

Definition 2 (AB-mixed sub-proof). Given a reso-
lution proof P , an AB-mixed sub-proof is a sub-proof of P
rooted in a clause λ, whose intermediate pivots are all AB-
mixed predicates. An AB-mixed sub-proof is maximal if the
root λ does not contain AB-mixed predicates.

When dealing with a background theory T we have the
following remark.

Observation 1. Let P ′ be a maximal AB-mixed sub-proof
rooted in λ. Then λ is a valid theory lemma for T .

This observation derives from Definition 2 and from the
fact that (i) AB-mixed predicates can only appear in theory

(a) (b) (c)

T -lemmaT -lemma

Figure 1: An overview of our approach. (a) is the
proof generated by the SMT-Solver. White points
represent A-local predicates, black points represent
B-local predicates, grey points represent AB-mixed
predicates. (b) AB-mixed predicates are confined
inside AB-mixed trees. (c) AB-mixed trees are re-
moved and their roots are valid theory lemmata in
T .

lemmata (as they do not appear in the original formula)
and (ii) a propositional resolution of two theory lemmata
generates another theory lemma.

Once AB-mixed maximal sub-proofs are formed, it is pos-
sible to replace them with their root clauses (Figure 1c). The
obtained proof is now free of AB-mixed predicates and can
be used to derive an interpolant using the method of [24],
provided that an interpolant-generating procedure is avail-
able for T .

The crucial part of our approach is an algorithm for proof
transformation. It relies on a set of transformation rules
that extends those introduced in [17]. These rules cannot
be used directly for proof transformations: they may derive
proof consequences that are weaker than those in the original
proof.

Our paper instead is based on a set of rules that never
derives weaker consequences. The exhaustive application of
the rules can be used to transform a proof P into a proof
P ′, where all AB-mixed variables are confined in AB-mixed
sub-proofs. Each rewrite rule can effectively swap two pivots
p and q in the resolution proof, or perform simplifications,
depending on a particular context.

In the following to facilitate the understanding of the al-
gorithm we will call AB-mixed and AB-pure predicates light
and heavy respectively. Our rules are applied when a light
predicate is below a heavy predicate in the proof tree. The
effect of the exhaustive application of our rules is to lift light
predicates over heavy predicates as bubbles in water.

2.2.1 Other Related Work

In the context of proof and interpolants, D’Silva et al. [12]
illustrate a set of global transformation rules and an algo-
rithm that reorder the proof w.r.t. a partial order among
pivots. Our approach works instead locally, and leaves more
freedom in choosing the strategies for rule applications. Also
our focus is not directly in computing interpolants, but rather
in rewriting the proof in such a way that previous techniques
could be applied.

The same authors in [13] focus on the concept of strength
of an interpolant. They present an analysis and a com-
parison of existing interpolation systems, together with a
method to combine systems in order to obtain weaker or
stronger interpolants from a given proof of unsatisfiability.
They also discuss the use and the limitations of the local
transformation rules of Jhala and McMillan [17].

3. MANIPULATING THE PROOF
In this section we describe our proof transformation frame-

work in terms of simple transformation rules. We show how
to adjust the proof with a proof-reconstruction algorithm,
and we show how to derive an algorithm for lifting light
variables over heavy variables.

3.1 Local Proof Transformation Rules

β γ
p

δ α q
η

Figure 2: Rule context

Figure 2 shows two consecutive resolution steps of a generic
proof: we shall call a similar structure a context. A con-
text involves two pivots p and q and five clauses β, γ, δ, α, η.
Clearly p is contained in β and γ (with opposite polarity),
and q is contained in δ and α (again with opposite polarity).
The reader may observe that q must be contained in β ∪ γ.
Figure 3 shows five proof transformation rules. Each rule

is associated with a different context, and, conversely, each
context can be mapped to exactly one rule (i.e., the set
of rules is exhaustive, modulo symmetry, for every possible
context).

The transformations corresponding to A1 and A2 were
first introduced in [17] and further discussed in [13]. We
devised the remaining three rules after a careful analysis of
all the possible contexts. Notice that a side-effect of the new
three rules is that they generate proofs with stronger roots.

A first property that distinguishes our set of rules is local-
ity : only the limited information represented by a context
is in fact needed to determine which rule is applicable.

The rules can be effectively employed to perform a local
reordering of the pivots. Each rule either swaps the position
of two pivots (A1, A2, B2), or it eliminates at least one pivot
(B1, B3). Later in the section, it will be shown how this
characteristic can be used to create an application strategy
aimed at sorting the pivots in a proof.

Notice also that rules B1-B3 produce a clause η′ ⊆ η. The
literals that are in η \ η′ need not to be resolved anymore
down in the proof. The proof can be therefore effectively
simplified. Algorithm 1 has exactly the purpose of propa-
gating the effect of the replacement of η by η′ ⊆ η along the
path leading from η′ to the empty clause.

3.2 The Propagation Algorithm
As mentioned in §2, a resolution proof can be thought of

as a tree. A node n is associated with an occurrence of a
clause in the proof (we will refer to it as ncl) and for each
pair of nodes m and n there is a directed edge m → n if
and only if mcl is an antecedent of ncl (by extension, we
will call m an antecedent of n and m a resolvent of n). For
each n which is not a leaf, nant1 and nant2 will be the two
antecedents (in an arbitrary order), npiv the pivot of the
resolution step of which ncl is the resolvent.

The idea of the algorithm reflects the mechanisms of the
restructuring procedures proposed in [2, 12]:

1. it determines the effect range of the substitution of η
with η′, which corresponds to the set of nodes reach-
able from the node associated with η′;

Case A1: s /∈ α, t ∈ γ

β : stC γ : stD
var(s)

δ : tCD α : tE
var(t)

η : CDE

⇒
β : stC α : tE

δ′ : sCE

α : tE γ : stD
var(t)

δ′′ : sDE
var(s)

η′ : CDE

Case A2: s 6∈ α, t /∈ γ

β : stC γ : sD
var(s)

δ : tCD α : tE
var(t)

η : CDE

⇒
β : stC α : tE

var(t)
δ′ : sCE γ : sD

var(s)
η′ : CDE

Case B1: s ∈ α, t ∈ γ

β : stC γ : stD
var(s)

δ : tCD α : stE
var(t)

η : sCDE

⇒ β : stC α : stE
var(t)

η′ : sCE

Case B2: s ∈ α, t /∈ γ

β : stC γ : sD
var(s)

δ : tDC α : stE
var(t)

η : sCDE

⇒
β : stC α : stE

var(t)
δ′ : sCE γ : sD

var(s)
η′ : CDE

Case B3: s ∈ α, t 6∈ γ

β : stC γ : sD
var(s)

δ : tCD α : stE
var(t)

η : sCDE

⇒ η′ : sD

Figure 3: Local transformation rules.

Step 1: application of a B2 rule

pq pr
p

qr pq
q

pr pu
p

ru rv
r

uv

⇒

pq pq
q

p pr
p

r pu
p

ru rv
r

uv

Step 2: elimination of an unnecessary resolution step (case 2)

pq pq
q

p pr
p

r pu
p

ru rv
r

uv

⇒
pq pq

q
p pr

p
r rv

r
uv

Step 3: update of a resolving clause (case 1)

pt pt
tp pr

p
r rv

r
uv

⇒
pt pt

tp pr
p

r rv
r

v

Figure 4: Example of rule application and subsumption propagation.

Algorithm 1: Subsumption propagation

Input: A proof perturbated by a B-rule
Output: A reconstructed proof
Data: R: set of nodes reachable from nη′ , V : set of

visited nodes
begin

V ← ∅;
Determine R, for example through a visit from nη′ ;
while R \ V 6= ∅ do

Choose n ∈ R \ V such that:
(nant1 ∈ R ∩ V or nant1 /∈ R) and
(nant2 ∈ R ∩ V or nant2 /∈ R);
V ← V ∪ {n};
if npiv ∈ n

ant1
cl and npiv ∈ n

ant2
cl then

ncl ← Res(nant1
cl , nant2

cl)
else if npiv /∈ n

ant1
cl and npiv ∈ n

ant2
cl then

Substitute n with nant1;
else if npiv ∈ n

ant1
cl and npiv /∈ n

ant2
cl then

Substitute n with nant2;
else if npiv /∈ n

ant1
cl and npiv /∈ n

ant2
cl then

Choose an antecedent nant;
Substitute n with nant;

end
end

2. it analyzes, one by one, all the reachable nodes; it is
necessary that the antecedents of a node n have al-
ready been visited (and possibly modified), in order to
guarantee a correct propagation of the modifications
to ncl;

3. due to the potential vanishing of literals from clauses,
it might happen that in some resolution step the pivot
is not present in both antecedents anymore; if that is
the case, we delete such resolution step, by replacing
the resolvent with the antecedent devoid of the pivot
(if the pivot is missing in both antecedents, either of
them is arbitrarily chosen), otherwise, we keep the step
while updating the resolvent clause. At the graph level,
we substitute n with nant1 or nant2, assigning the re-
solvents of n (if any) to it.

Notice that this algorithm deals with the general case of
proof graphs, where the propagation process could affect an
arbitrarily large subgraph instead of a single path leading to
the empty clause.

3.3 Pivot Reordering
We stated in §2.2 that the main purpose of introducing

the set of rules is to obtain a transformation of a proof P
into a proof P ′ such that all light variables are above heavy
variables in the proof.

In order to achieve this goal it is sufficient to consider
only unordered contexts, i.e. those in which var(t) is a light
variable and var(s) is a heavy variable. Therefore a simple
non-deterministic algorithm can be derived as follows:

Algorithm 2: Pivot reordering

Input: A proof
Output: A proof without unordered contexts
Data: U : set of unordered contexts
begin

Determine U , for example through a visit of the
proof tree;
while U 6= ∅ do

Choose a context in U ;
Apply the associated rule, and the propagation
algorithm if necessary;
Update U ;

end
end

The algorithm terminates. Notice in fact that each iter-
ation strictly decreases the distance of an occurrence of a
heavy pivot w.r.t. ⊥, until no more unordered contexts are
left.

3.4 Proof Graphs
Up until now the discussion was related to proof trees,

where each node had two incoming edges (from its antecedents)
and exactly one outgoing edge (to its resolvent); there was no
restriction on the number of graph occurrences of a clause,
which in fact could appear more than once, associated with
different nodes.

In order to avoid this redundancy while achieving a more
compact data structure, it is usual to represent a proof with
a proof graph. The only significant difference from a proof
tree consists in the possibility for a node n to have more
than one outgoing edge, since it is linked to all the nodes
whose clauses are the resolvents of ncl in the proof.
A few remarks are in order:

1. if the clause δ participates as antecedent in more than
one resolution step (i.e. the associated node has more
than one outgoing edge) then a rule cannot now be
directly applied. In fact, the modification of δ would
indirectly affect other steps besides the one present
in the current context. We use a simple solution that
consists of creating a copy nδ′ of nδ, to which we assign
all the edges of nδ, except nδ → nη, before applying a
rule.

2. Having multiple outgoing edges for nβ , nγ , nα does
not add any difficulty: the application of a rule will
take into account a single edge corresponding to an
occurrence of a clause as antecedent, leaving the other
edges untouched.

3. As for the propagation of the effect of B rules, the set
of nodes reachable from nη is likely to be a subgraph
rather than a simple path. Our algorithm takes into
account the fact that the propagation might happen
along multiple paths.

4. APPLICATIONS
In this section we show a number of techniques currently

employed in state-of-the-art SMT-Solvers that can poten-
tially introduceAB-mixed predicates during the solving phase.
If these predicates become part of the proof of unsatisfiabil-
ity, the proof-reordering algorithm described in §3.3 can be
applied to produce an AB-pure proof.

Id Clauses Propositional abstraction
1 x = wr(y, i, e) p1
2 rd(x, j) 6= rd(y, j) p2
3 rd(x, k) 6= rd(y, k) p3
4 j 6= k p4
5 (i = j ∨ rd(wr(y, i, e), j) = rd(y, j)) p5 p6
6 (i = k ∨ rd(wr(y, i, e), k) = rd(y, k)) p7 p8
7 (x 6= wr(y, i, e) ∨ rd(x, j) = rd(y, j) ∨ rd(wr(y, i, e), j) 6= rd(y, j)) p1 p2 p6
8 (x 6= wr(y, i, e) ∨ rd(x, k) = rd(y, k) ∨ rd(wr(y, i, e), k) 6= rd(y, k)) p1 p3 p8
9 (j = k ∨ i 6= j ∨ i 6= k) p4 p5 p7

p7p8 p1p3p8

p1p3p7 p4p5p7

p1p3p4p5 p4
p4

p1p3p5

p5p6 p1p2p6

p1p2p5
p5

p1p2p3 p3

p1p2 p1

p2 p2

⊥

p7p8 p1p3p8

p1p3p7 p4p5p7

p1p3p4p5

p5p6 p1p2p6

p1p2p5
p5

p1p2p3p4 p4
p4

p1p2p3 p3

p1p2 p1

p2 p2

⊥

(a) (b)

Figure 5: Clauses from Example 2. ϕ ≡ {1, 2, 3, 4}, ψ ≡ {5, 6}. Clauses 7-9 are theory lemmata discovered by
the EUF solver. (a) is a possible proof obtained by the SMT-Solver (for EUF) on ϕ ∧ ψ. (b) is a proof after
swapping p4 and p5 by means of rule A2; in the resulting proof all mixed literals (p5-p8) appear in the upper
part of the proof in an AB-mixed proof subtree. The root of the AB-mixed subtree p1p2p3p4 is a valid theory
lemma in AX .

4.1 Reduction Techniques
Let Tk and Tj be two quantifier-free decidable theories

such that Tk is weaker (less expressive) than Tj . Given a Tj-
formula ϕ, and a decision procedure SMT(Tk) for quantifier-
free formulæ in Tk, it is often possible to obtain a decision
procedure SMT(Tj) for quantifier-free formulæ in Tj by aug-
menting ϕ with a finite set of Tk-lemma ψ. These lemmata
(or axioms) explicitly encode the necessary knowledge such
that Tk |= ϕ ∧ ψ if and only if Tj |= ϕ. Therefore a decision
procedure for Tj is simply:

Algorithm 3: A reduction approach for SMTj

Input: ϕ for Tj
begin

ψ = generateLemmata(ϕ);
return SMT(Tk)(ϕ ∧ ψ);

end

In practice the lemmata generation function can be made
lazy by plugging it inside the SMT-Solver directly. This
paradigm is known as Lemma on Demand [21] or Splitting
on Demand [3]1. This feature does not affect our method.
We show some reduction techniques as follows.

4.1.1 Reduction of AX to EUF

We consider the case where Tk ≡ EUF , the theory of
equality with uninterpreted functions, and Tj ≡ AX , the
theory of arrays with extensionality. The axioms of EUF are
the ones of equality (reflexivity, symmetry, and transitivity)
plus the congruence axioms ∀x, y. x = y ⇒ f(x) = f(y), for
any functional symbol of the language.

1The second is often used to indicate the case where some
branching, that is supposed to occur inside a theory-solver,
is delegated to the underlying Boolean layer.

The theory of arrays AX is instead axiomatized by:

∀x, i, e. rd(wr(x, i, e), i) = e (1)

∀x, i, j, e. i = j ∨ rd(wr(x, i, e), j) = rd(x, j) (2)

∀x, y. x = y ⇔ (∀i. rd(x, i) = rd(y, i)) (3)

State-of-the-art approaches for AX implemented in SMT-
Solvers [5, 7, 11, 14] are all based on reduction to EUF . In-
stances of the axioms of AX are added to the formula in
a lazy manner until either the formula is proven unsatisfi-
able or saturation is reached. The addition of new lemmata
may require the creation of AB-mixed predicates when a
partitioned formula is considered.

Example 2. Let ϕ ≡ A ∧ B, where A ≡ x = wr(y, i, e),
and B ≡ rd(x, j) 6= rd(y, j) ∧ rd(x, k) 6= rd(y, k) ∧ j 6= k.
Variables {i, e} are A-local, {j, k} are B-local, and {x, y}
are AB-common. To prove ϕ unsatisfiable with a reduction
to EUF , we need to instantiate axiom (2) twice as ψ ≡ (i =
j ∨ rd(wr(y, i, e), j) = rd(y, j))∧ (i = k∨ rd(wr(y, i, e), k) =
rd(y, k)). Notice that we introduced four AB-mixed predi-
cates. Now we can send ϕ ∧ ψ to a SMT-Solver for EUF
to produce the proof of unsatisfiability. Figure 5 shows a
possible resolution proof generated by the SMT-Solver, and
how it can be transformed into a proof without AB-mixed
predicates.

4.1.2 Reduction of LIA to LRA

Decision procedures for LIA (linear integer arithmetic)
often rely on iterated calls to a decision procedure for LRA
(linear rational arithmetic). An example is the well-known
method of “branch-and-bound”: given a feasible rational re-
gion R for a set of variables ~x = (x1, . . . , xn), and a non-
integer point ~c ∈ R for ~x, then one step of “branch-and-
bound” generates the two subproblems R ∪ {xi ≤ ⌊ci⌋} and
R ∪ {xi ≥ ⌈ci⌉}. These are again recursively explored until
an integer point ~c is found.

Notice that the splitting on the bounds can be delegated to
the Boolean engine by adding the lemma ((xi ≤ ⌊ci⌋)∨(xi ≥
⌈ci⌉)). In order to obtain a faster convergence of the algo-
rithm, it is possible to split on cuts, i.e. linear constraints,
rather than on simple bounds. However cuts may add AB-
mixed predicates if A-local and B-local variables are mixed
into the same cut.

Example 3. We are given three LIA (linear integer arith-
metic) constraints: Let ϕ ≡ A ∧ B, where A ≡ 5x − y ≤
1 ∧ y − 5x ≤ −1, and B ≡ 5z − y ≤ −2 ∧ y − 5z ≤ 3. The
axiom ψ ≡ ((x− z ≤ 0) ∨ (x− z ≥ 1)) (which contains two
AB-mixed literals) is sufficient for ϕ∧ψ to be proven unsat-
isfiable by a solver for LRA, by discovering two additional
theory lemmata ((5x− y 6≤ 1) ∨ (y − 5z 6≤ 3) ∨ (x− z ≤ 0))
and ((5x− y 6≤ −1) ∨ (y − 5z 6≤ −2) ∨ (x− z ≥ 1)).

4.1.3 Ackermann’s Expansion

When Tj is a combination of theories of the form EUF∪Tj ,
Ackermann’s expansion [1] can be used to reduce the rea-
soning from Tj to Tk. The idea is to use as ψ the exhaustive
instantiation of the congruence axiom x = y ⇒ f(x) = f(y)
for all pairs of variables appearing in uninterpreted func-
tional symbols and all uninterpreted functional symbols f in
ϕ. This instantiation generates AB-mixed predicates when
x is A-local and y is B-local.

Example 4. Let Tk ≡ LRA. Let ϕ ≡ A ∧ B and A ≡
(a = x+ y ∧ f(a) = c), B ≡ (b = x+ y ∧ f(b) = d ∧ c 6= d).
The axiom ψ ≡ ((a 6= b) ∨ (f(a) = f(b)) is sufficient for
LRA to detect the unsatisfiability of ϕ ∧ ψ, by discovering
two additional theory lemmata ((f(a) 6= f(b))∨ (f(a) 6= c)∨
(f(b) 6= d)∨(c 6= d)) and ((a 6= x+y)∨(b 6= x+y)∨(a = b)).
(Notice that f(a) and f(b) are treated by LRA as if they
were two variables).

4.2 Theory Combination via DTC
A generic framework for theory combination was intro-

duced by Nelson and Oppen in [22]. We recall it briefly as
follows.

Given two signature-disjoint and stably-infinite theories
T1 and T2, a decision procedure for a conjunction of con-
straints in the combined theory T1∪T2 can be obtained from
the decision procedures for T1 and T2. First, the formula ϕ
is flattened, i.e. auxiliary variables are introduced to sepa-
rate terms that contain both symbols of T1 and T2. Then the
idea is that the two theory-solvers for T1 and T2 are forced to
exhaustively exchange interface equalities i.e. equalities be-
tween interface variables (interface variables are those that
appear both in constraints of T1 and T2 after flattening)2.
Delayed Theory Combination (DTC) implements a non-

deterministic version of the Nelson-Oppen framework, in
which interface equalities are not exchanged by the deciders
directly, but they are guessed by the SAT-Solver. With DTC
it is possible to achieve a higher level of modularity w.r.t.
the classical Nelson-Oppen framework. DTC is currently
implemented (with some variation) in most state-of-the-art
SMT-Solvers.

If the set of shared variables contains only A-local or B-
local symbols, than no AB-mixed interface equality is gen-
erated, and an interpolant can be derived with the methods

2Notice that in practice flattening can be avoided. For
instance in Example 5 we do not perform any flattening.

already present in literature. Otherwise our method can be
applied to reorder the proof, as an alternative to the tech-
niques described in [9, 15].

Example 5. Consider again ϕ of Example 4. Since a, b,
f(a), f(b) appear in constraints of both theories, we need to
generate two interface equalities a = b and f(a) = f(b). The
guessing of their polarity is delegated to the SAT-Solver. The
SMT-Solver will detect the unsatisfiability after the EUF-
solver discovers the two theory-lemmata ((a 6= b) ∨ (f(a) =
f(b)) and ((f(a) 6= f(b))∨ (f(a) 6= c)∨ (f(b) 6= d)∨ (c 6= d))
and the LRA-solver discovers the theory-lemma ((a 6= x +
y) ∨ (b 6= x + y) ∨ (a = b)). (Notice, again, that f(a) and
f(b) are treated by LRA as if they were two variables).

5. EXPERIMENTS
For the purpose of this experimentation we have chosen

to focus on one particular application of §4, namely Acker-
mann’s Expansion for theory combination.

We evaluated the proof transformation technique on the
set of QF_UFIDL formulæ from the SMT-LIB3 (QF_UFIDL
encodes formulæ in the combined theory EUF ∪IDL). The
suite contains 319 unsatisfiable instances. Each formula was
split in half to obtain an artificial interpolation problem (in
the same fashion as [9])4.
The proof transformation framework is implemented in

OpenSMT [8] which features a preliminary support for gen-
eration and transformation of proofs along the lines of §3.
Proof transformation is applied when the proof contains
AB-mixed predicates, in order to lift them up inside AB-
maximal sub-proofs and replace them with their roots.

We ran the experiments on an Ubuntu server equipped
with Dual-Core 2GHz Opteron 2212 CPU and 4GB of mem-
ory. The benchmarks were executed with a time-out of
60 minutes and a memory threshold of 2GB (whatever is
reached first): 172 instances, of which 82 proofs contained
AB-mixed predicates5, were successfully handled within these
limits. We have reported the cost of the transformation and
its effect on the proof; the results are summarized in Table 5.
We grouped benchmarks together following the original clas-
sification used in SMT-LIB and provided average values for
each group4.

The results in Table 5 demonstrate that our proof trans-
formation technique induces, on average, about than 13%
overhead with respect to plain solving time (recall that our
implmentation is still at a rather preliminary stage – to come
up with an efficient implementation of the proof transforma-
tion algorithm is part of the ongoing work). However, what
is important for this experimental evaluation is to show that
no blow-up in the proofs size takes place during the process.

The average increase in size is around 74%, but not all the
instances experienced a growth; we observed in fact that in
42 out of 82 benchmarks the transformed proof was smaller
then the original one both in the number of nodes and edges.
Overall it is important to point out that we never experi-
enced any exponential blowup in the size of the proof during
the transformation.

3http://www.smt-lib.org
4 The Benchmarks and the detailed results are available

at http://verify.inf.usi.ch/opensmt/iccad2010.
5Notice that in some cases AB-mixed predicates were

produced during the search, but they did not appear in the
proof.

Group # #AB %time %nodes %edges

RDS 2 7 84% -16% -19%
EufLaArithmetic 2 74 18% 187% 193%
pete 15 20 16% 66% 68%
pete2 52 13 6% 73% 80%
uclid 11 12 29% 87% 90%

Overall 82 16 13% 74% 79%

Table 1: The effect of proof transformation on
QF_UFIDL benchmarks summarized per group: # —
number of benchmarks in a group, #AB — average
number of AB-mixed predicates in a proof, %time —
average time overhead induced by transformation,
%nodes and %edges — average difference in the proof
size as a result of transformation.

Another interesting result to report is the fact that only
45% of the proofs contained AB-mixed predicates and, con-
sequently, required transformation. This is another motiva-
tion for using off-the-shelf algorithms for SMT-Solvers and
have the proof transformed in a second stage, rather then
tweaking (and potentially slowing down) the solver to gen-
erate clean proofs upfront.

6. CONCLUSION AND FUTURE WORK
We have presented a technique to transform a proposi-

tional proof that isolates and removes AB-mixed predicates,
in such a way that known procedures to compute inter-
polants can be applied. The approach enables the use of
off-the-shelf techniques for SMT-Solvers that are likely to
introduce AB-mixed predicates, such as Ackermann’s Ex-
pansion, Lemma on Demand, Splitting on Demand, and
DTC. We have shown by means of experiments that our
rules can effectively transform the proof without generating
any blow-up.

As future work we would like to implement interpolation
techniques on top of our framework in order to experiment
with different strategies of proof transformation, and com-
pare with other approaches. Also we plan to explore the
possibility of using our rules for the mere purpose of proof
reduction.

7. REFERENCES
[1] W. Ackermann. Solvable Cases of the Decision

Problem. Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1954.

[2] O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and
O. Strichman. Linear-Time Reductions of Resolution
Proofs. In HVC, pages 114–128, 2008.

[3] C. Barrett, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. Splitting on Demand in SAT Modulo
Theories. In LPAR, pages 512–526, 2006.

[4] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli.
Handbook on Satisfiability, volume 185, chapter
Satisfiability Modulo Theories. IO Press, 2009.

[5] M. Bofill, R. Nieuwenhuis, A. Oliveras,
E. Rodrguez-Carbonell, and A. Rubio. A Write-Based
Solver for SAT Modulo the Theory of Arrays. In
FMCAD, pages 101–108, 2008.

[6] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila,
P. Van Rossum, S. Ranise, and R. Sebastiani. Efficient
Satisfiability Modulo Theories via Delayed Theory
Combination. In CAV’05, pages 335–349, 2005.

[7] R. Brummayer and A. Biere. Lemmas on Demand for
the Extensional Theory of Arrays. JSAT, 2009.

[8] R. Bruttomesso, E. Pek, N. Sharygina, and
A. Tsitovich. The OpenSMT Solver. In TACAS, 2010.

[9] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient
Interpolant Generation in Satisfiability Modulo
Theories. In TACAS, pages 397–412, 2008.

[10] W. Craig. Three uses of the Herbrand-Gentzen
theorem in relating model theory and proof theory. J.
Symb. Log., pages 269–285, 1957.

[11] L. de Moura and N. Bjørner. Generalized, Efficient
Array Decision Procedures. In FMCAD, 2009.

[12] V. D’Silva, D. Kroening, M. Purandare, and
G. Weissenbacher. Restructuring Resolution
Refutations for Interpolation. Technical report, ETH,
2008.

[13] V. DSilva, D. Kroening, M. Purandare, and
G. Weissenbacher. Interpolant Strength. In VMCAI,
pages 129–145, 2010.

[14] A. Goel, S. Krstić, and A. Fuchs. Deciding Array
Formulas with Frugal Axiom Instantiation. In SMT,
2008.

[15] A. Goel, S. Krstic, and C. Tinelli. Ground
Interpolation for Combined Theories. In CADE, 2009.

[16] T. Henzinger and K. L. McMillan R. Jhala,
R. Majumdar. Abstractions from Proofs. In POPL,
2004.

[17] R. Jhala and K.L. McMillan. Interpolant-Based
Transition Relation Approximation. In CAV, pages
39–51, 2005.

[18] K. L. McMillan. Interpolation and SAT-Based Model
Checking. In CAV, pages 1–13, 2003.

[19] K. L. McMillan. An Interpolating Theorem Prover. In
TACAS, pages 16–30, 2004.

[20] K. L. McMillan. Applications of Craig Interpolation to
Model Checking. In CSL, pages 22–23, 2004.

[21] L. De Moura and H. Rue. Lemmas on Demand for
Satisfiability Solvers. In SAT, 2002.

[22] G. Nelson and D. C. Oppen. Simplification by
Cooperating Decision Procedures. ACM Transactions
on Programming Languages and Systems, 1(2):245–57,
1979.

[23] P. Pudlák. Lower Bounds for Resolution and Cutting
Plane Proofs and Monotone Computations. J. Symb.
Log., 62(3):981–998, 1997.

[24] G. Yorsh and M. Musuvathi. A Combination Method
for Generating Interpolants. In CADE, 2005.

