
Automated Verification of Security Policies of
Mobile Programs

Natasha Sharygina

University of Lugano, Switzerland

and Carnegie Mellon University, USA

joint work with Chiara Braghin and Katerina Barone-Adesi

University of Lugano

EPFL, January 12, 2009

Automated Verification of Security Policies of Mobile Programs – p. 1/24

Motivation

GSM
Phone

Mobile Node Data
Adapter

PCMCIA

GSM Network

Modem Pool

LAN

LAN Host

9600 bps

MODEM

MODEM

Dialup
Server

Router

WAN Host

Base
Transceiver
Station

Mobile Services
Switching Center

IWF MODEM

MODEM

 Public Switched
Telephone Network (PSTN)

Internet

Exhaustive formal techniques are essential for verification of mobile
programs, focusing onsecurity issues.

Automated Verification of Security Policies of Mobile Programs – p. 2/24

Sample Security Policies

Mandatory Access Control
If ℓ is a location/host that contains confidential information,we
need to check that the information is not leaked (i.e., no write to
remote locations).

Information Flow
If a user is shopping using a credit card, we need to validate to
whom/under what conditions the threads reveal the confidential
information (by exploiting the trail of the actions of the threads and
checking parameters of exchange actions).

“Bad” Traces
If Ti is a downloaded applet, need to check for Trojan horses, i.e.,
sequences of malicious instructions (e.g., installing a backdoor or a
keylogger).

Automated Verification of Security Policies of Mobile Programs – p. 3/24

State of the Art

Programming languagesfor mobile code:
Java, Telescript, Obliq, Klaim, C,· · ·

Currentvalidation techniques:
Testing and simulation
Type system or Abstract Interpretation:

on process algebrae (π-calculus, Mobile Ambients, Dpi, etc.)
on very small fragments of programming languages

Dynamic policy verification (e.g., Java sandbox)
Model checking (only for process algebra models, not for theactual
mobile code)

Automated Verification of Security Policies of Mobile Programs – p. 4/24

Objectives

Expressive formalism for specifying mobile systems:
explicit specification of thethread locationandlocation net
formalization of different synchronization and communication
mechanisms

Security policies specification language
not restricted to a single security policy
supports both access control and information flow specification

Formal analysis of mobile systems by model checking of security and
safety properties:

abstraction-based approach for efficiency
sound modeling of unbounded thread creation
verification of actual programs not abstract models

Automated Verification of Security Policies of Mobile Programs – p. 5/24

Our domain

Mobile systems are aspecial case of multi-threaded programs.

Differences:
Threads may run at different locations (e.g., different
administrative domains, hosts, physical locations);
Threads may migrate from a location to another;
Thread communication takes into account geographical
distribution:

distinction among local and global (remote) communication;
remote communication may be restricted by security policies.

Automated Verification of Security Policies of Mobile Programs – p. 6/24

Multi-threads - Classical Representation

T ::= threads
T1 | T2 parallel comp.

| Instr sequential exec.
Instr ::= instructions

Instr1 ; Instr2 sequential exec.
| x := e assignment
| if (Expr != 0) Instr condition
| while (Expr != 0) Instr loop
| skip skip
| m sync. call
| fork thread creation

Automated Verification of Security Policies of Mobile Programs – p. 7/24

Location-aware Threads (1)

LT ::= location-aware threads
| ℓ[[T]] single thread
| LT1 ‖ LT2 parallel composition

T ::= threads
T1 | T2 parallel comp.

| Instr sequential exec.
Instr ::= instructions

Instr1 ; Instr2 sequential exec.
| x := e assignment
| if (Expr != 0) Instr condition
| while (Expr != 0) Instr loop
| skip skip
| m sync. call
| fork thread creation
| M Instr moving instr,go in(ℓ), go out(ℓ)

Automated Verification of Security Policies of Mobile Programs – p. 8/24

Location-aware Threads (2)

Explicit notion oflocation(ℓ[[T]]).

Ability to capture the geographical distribution of the Web:
location netis used to encapsulates the hierarchical nesting

location net: a tree, with nodes labeled by unique location
names;
mobility: updates of the location net;

the structure of the location net can be constrained to formalize
various security policies.

Ability to locate multi-threaded programs.

Automated Verification of Security Policies of Mobile Programs – p. 9/24

Location Net - Example

Consider a system with the following set of locations:

Loc = {env, ℓ0, ℓ1, ℓ2, ℓ3, ℓ4}.

The location net is:

{env.ℓ0.ℓ1, env.ℓ2, env.ℓ3, env.ℓ4},

which corresponds to the following tree:

Automated Verification of Security Policies of Mobile Programs – p. 10/24

The Computational Model (1)

A location-aware thread is a Labeled Kripke Structure
T = (S, Init, AP,L,Σ,R), with:

The set of statesS = (Vl, Vg, pc, ϕ, η):
Vl evaluation of local variables,
Vg evaluation of global variables,
pc the program counter,
ϕ : Loc → Loc is a partial order function denoting thelocation
net (whereLoc is the set of location names),
η : N → Loc is a partial function denoting thethread location.

R ⊆ S × Σ × S ∪ { S × S } is a totallabeledtransition relation

notice thats
fork
−−−−→ (s′, s), with s′ the next state ofs, and

s = Init the initial state of the newly created thread.

Automated Verification of Security Policies of Mobile Programs – p. 11/24

The Computational Model (2)

Inference rules for the labeled transition relationRi for threadTi.

(FORK-ACTION)
Instr(s.pc) = fork

s
fork

−−−→ i (s′, s) [s′.pc = s.pc + 1; s = Initi]

(in-ACTION)
Instr(s.pc) = go in(ℓ) ∧ (∃ℓ1 s.t.: ℓ1 := s.η(i) ∧ s.ϕ(ℓ1) = s.ϕ(ℓ))

s
go_in(l)

−−−−−→ i s′ [s′.pc = s.pc + 1; s.ϕ ∪ {ℓ1 7→ ℓ}]

(SYNC-ACTION)
Instr(s.pc) = m

s
m
−→ i s′ [s′.pc = s.pc + 1]

Automated Verification of Security Policies of Mobile Programs – p. 12/24

The Computational Model (3)

The set ofΣ is split into mutually disjoint setsΣM , ΣS, ΣT , Στ ,
representingmoving, synchronization, thread creation, andτ actions.

The labeled transition relation for the composition of two threadsT1 ‖ T2.

(SYNC-ACTION)

a ∈ ΣS
1 ∧ s1 a

−→ 1 s
′1
∧ a ∈ ΣS

2 ∧ s2 a
−→ 2 s

′2
∧ s1.η(1) = s2.η(2)

(s1, s2)
a
−→ (s

′1
, s

′2
)

(L-PAR)

a ∈ ΣM
1 ∧ s

a
−→ 1 s

′1

(s1, s2)
a

−→ 1 (s
′1
, s2)

(R-PAR)

a ∈ ΣM
2 ∧ s2 a

−→ 2 s
′2

(s1, s2)
a

−→ 2 (s1, s
′2

)

Automated Verification of Security Policies of Mobile Programs – p. 13/24

Policy Specification Language (1)

A security policy consists of a set of rules or conditions stating which
actions are prohibited in the system:

〈policy〉 − > {〈sec_levels〉 | 〈operation_def〉 | 〈deny statement〉}

〈deny statement〉 − > deny to 〈deny_target〉 [〈code base〉][〈code origin〉]

{ 〈permission entry〉 {, 〈permission entry〉} }

〈deny_target〉 − > public| 〈entity list〉

The location may play an important role in determining access rights:

〈code base〉 − > codeBase 〈IPv4 addr〉

〈code origin〉 − > codeOrigin(〈location〉 | remote)

〈location〉 − > 〈location_id〉 {: 〈location_id〉}

Automated Verification of Security Policies of Mobile Programs – p. 14/24

Policy Specification Language (2)

A permission entry specifies which actions are denied:

〈permission entry〉 − > permission 〈action〉

〈action〉 − > 〈function〉 | 〈operation〉

In case of a function, it is possible to specify(i) formal parameters
(variable names),(ii) actual parameters (the value of the arguments
passed),(iii) an empty string, denying access to the function regardless
of the arguments to it, or(iv) the keywordhigh (no high variables can
be passed as arguments to this function).

〈function〉 − > function 〈function_id〉 〈parameters〉

〈parameters〉 − > 〈actual par〉 | 〈formal par〉 | high | ε

Automated Verification of Security Policies of Mobile Programs – p. 15/24

Examples of Security Policies Specification

Java sandbox policy: it is responsible for protecting a number of
resources by preventing applets from accessing the local hard disk and
the network.

operation read_file_system { fread, read, scanf, gets, fgets}

deny to codeOrigin remote

{ permission function connect_to_location,

permission operation read_file_system }

A naive multi-level security policy:

High={confidential_var, x}

deny to public

{ permission function fopen high}

Automated Verification of Security Policies of Mobile Programs – p. 16/24

Implementation and Validation

Implemented as part of SATABS, CEGAR-based model checker for
ANSI-C;
– SAT-based abstraction of programs (TACAS 2005);
– unbounded thread creation is treated soundly by over-approximating
thread creation (FMCAD 2006 paper);
– Direct encoding of data (valuation of program variables) and control
(control actions);
– Abstract transition relation encodes location net (threads distribution);
– Various location net-specific absraction mechanisms are available to
manage size of state space.

Experimented with mobile programs implemented in C (web-services,
shopping systems, airline booking)

Automated Verification of Security Policies of Mobile Programs – p. 17/24

The CEGAR-based Mobile Code Analysis

Automated Verification of Security Policies of Mobile Programs – p. 18/24

Automated Security Verification

ProgramP ′ is annotated with the security invariants expressed in the
security policy;

A security monitor function is created for each permission statement in
the policy;

P ′ consists of the product ofP with all monitor functions
corresponding to the security policyS.

Automated Verification of Security Policies of Mobile Programs – p. 19/24

An Efficient Security-driven abstraction

Idea: Remove from the system behaviors not related to the
location-specific policy:

Location Projection, π ↓ ℓ: thread executions for a particular
location.
Moving Projection, π ↓M i: all movingactions executed by thread
Ti.
Thread Projection, π ↓ i: all actions executed by threadTi.

Automated Verification of Security Policies of Mobile Programs – p. 20/24

Verifying a Shopping Agent System

policy time (s) # iterations # predicates pv?

1 (sa) 151.644 7 17 yes

2 local (sa) 100.234 5 15 no

2 remote (sa) 524.866 12 36 yes

3 codeBase (sa) 340.011 12 22 yes

Sample policy for the shopping agent system (2(sa)):
deny to public

{ permission function fopen "/etc/passwd"}

Automated Verification of Security Policies of Mobile Programs – p. 21/24

Summary

Expressive formalism for specifying mobile systems:
– it explicitly models thread location, location distribution and thread
moving operations;
– it preserves both data and communication structures of mobile
systems.

Specification language for specifying security policies ofmobile code:
– generic policies;
– information flow;
– access control policies;

Integrated model checking framework to support exhaustiveanalysis of
security policies.
– preprocessing and automated program anotation with security
monitor functions;
– CEGAR-based approach;
– location-aware abstractions.

Automated Verification of Security Policies of Mobile Programs – p. 22/24

References

Automated Verification of Security Policies in Mobile Code,
Proceedings of 6th International Conference on IntegratedFormal
Methods, UK, 2007, LNCS, Vol. 4591, p. 37 - 53.

Mobile Code Verification Project at Formal Verification and Security
Group at University of Lugano, Switzerland,www.verify.inf.unisi.ch

Automated Verification of Security Policies of Mobile Programs – p. 23/24

Questions?

Automated Verification of Security Policies of Mobile Programs – p. 24/24

	Motivation
	Sample Security Policies
	State of the Art
	Objectives
	Our domain
	Multi-threads - Classical Representation
	Location-aware Threads (1)
	Location-aware Threads (2)
	Location Net - Example
	The Computational Model (1)
	The Computational Model (2)
	The Computational Model (3)
	Policy Specification Language (1)
	Policy Specification Language (2)
	Examples of Security Policies Specification
	Implementation and Validation
	The CEGAR-based Mobile Code Analysis
	Automated Security Verification
	An Efficient Security-driven abstraction
	Verifying a Shopping Agent System
	Summary
	References
	Questions?

