
Incremental Upgrade Checking by Means of
Interpolation-based Function Summaries

Ondrej Sery∗† Grigory Fedyukovich∗ Natasha Sharygina∗
∗Formal Verification Lab, University of Lugano, Switzerland

†D3S, Faculty of Mathematics and Physics, Charles University, Czech Rep.

Abstract—During its evolution, a typical software/hardware
design undergoes a myriad of small changes. However, it is
extremely costly to verify each new version from scratch. As
a remedy to this problem, we propose to use function summaries
to enable incremental verification of the evolving systems. Dur-
ing the evolution, our approach maintains function summaries
derived using Craig’s interpolation. For each new version, these
summaries are used to perform a local incremental check. Benefit
of this approach is that the cost of the check depends on the
extent of the change between the two versions and can be
performed cheaply for incremental changes without resorting
to re-verification of the entire system. Our implementation and
experimentation in the context of the bounded model checking
for C confirms that incremental changes can be verified efficiently
for different classes of industrial programs.

I. INTRODUCTION

Software and hardware designs are usually not written all
at once, but are built incrementally, due to numerous reasons:
1) requirements change and have impact on the design and
implementation; 2) errors are often discovered late in the
design cycle and must be removed; 3) software components are
updated or substituted to adapt to architectural and requirement
changes; just to name a few. Changes are done frequently
during the lifetime of many products and can introduce errors
that were not present in the old versions, or expose errors
that were present before but did not get exposed. The state
of the affairs is that the correctness of the system has to be
re-validated from scratch after any (even minor) change. Often
the cost of this validation dominates costs of the products.

Currently, re-validation mostly relies on the execution of
extensive test suits, which is inherently not exhaustive; fault
localization is mainly manual and driven by experts’ knowl-
edge of the system; fault fixing often introduces new faults that
are hard to detect and remove. To address this problem, this
paper presents a new fully automated approach that extends
formal verification by model checking to the problem of
validation of system upgrades. The new technique focuses
on the incremental changes and takes advantage of the effort
already invested in the verification of previous versions. The
target of our approach is to avoid (when possible) re-validation
of the new system and to reduce analysis only to the parts of
the system which were affected by the change.

The advantages of model checking are often shaded by
its high consumption of computational resources (known as

This work is partially supported by the European Community under the
call FP7-ICT-2009-5 — project PINCETTE 257647.

the state-space explosion problem). Many efficient complex-
ity reduction algorithms have been developed to cope with
this problem among which the representative approaches
are symbolic verification such as Bounded Model Checking
(BMC) [1], and different types of automated abstraction (pred-
icate abstraction [2], interpolation-based reasoning [3], func-
tion summarization [4], [5], [6], [7], etc.). Most state-of-the-
art model checking tools implement some (or combinations) of
these methods in order to deal with complex designs. Notably,
combinations of such techniques are known to be crucial for
combating the high complexity of verification.

This paper presents a solution to the upgrade checking
problem that extends the existing efficient techniques known to
work well for standalone verification to the problem of analy-
sis of system changes. In particular, it presents an incremental
bounded model checking approach that uses function sum-
marizations for local upgrade checks. The upgrade checking
algorithm maintains program function summaries (i.e., over-
approximations of the actual behavior of the functions, in
our case computed by means of Graig interpolation [7]) and
when a new version arrives, it checks if the summaries of the
modified functions are still valid over-approximations. This is
a local and cheap check. If it succeeds, the upgrade is safe with
respect to both the preserved and newly added behaviors (we
assume the upgrade was cleaned off the previously detected
bugs). If not, the check is propagated by the call tree traversal
to the caller of the modified function. As soon as the safety
is established, new summaries are generated using Craig
interpolation for all the functions with invalid summaries. If
the check fails for the call tree root (the main function of the
program), an error trace is created and reported to the user as
a witness to the violation.

The upgrade checking algorithm implements the refinement
strategy for dealing with spurious behaviors which can be
introduced during computation of the over-approximated sum-
maries. The refinement procedure for upgrade checks builds
on ideas of using various summary substitution scenarios [7],
[8] and extends it to 1) handle summaries of nested function
calls and 2) consequently to use them to further simplify the
validity checks of the upgraded functions summaries. Failures
of such checks may be due to the use of too weak summaries,
in which case, the refinement is used to expand the involved
function calls on demand.

We developed a prototype implementation of the proposed
algorithm and evaluated it using a set of industrial benchmarks.

Our experimentation confirms that the incremental analysis of
upgrades containing incremental changes is often orders of
magnitude faster then analysis preformed from scratch.

Although we implemented the proposed upgrade checking
algorithm in the context of bounded model checking, the
algorithm itself is more general and can be employed in other
contexts, where over-approximative function summaries are
used. For example, the WHALE approach [6] designed for
standalone verification could be easily extended to incremental
upgrade checking using our algorithm.

In summary, the contributions of the paper are as follows:
• It presents a fully automated model-checking-based tech-

nique for verification of incremental upgrades. It is able
to re-validate all previously established properties and to
detect newly introduced errors.

• It efficiently combines bounded model checking with
function summarization for local and incremental analy-
sis of changes. The use of Craig interpolation to compute
summaries allows capturing symbolically all execution
traces through the function and, together, with the local
per-function checks of the new algorithm, results in the
efficient analysis procedure.

• It reports on the prototype implementation of the new
technique and its validation on industrial benchmarks.

The rest of the paper is organized as follow. Sect. II
defines the notation and presents background on function
summarization in BMC. Sect. III presents the new upgrade
checking algorithm and proves its correctness. Sect. IV de-
scribes implementation and evaluation of the approach. Sect. V
discusses the related work and Sect. VI concludes the paper.

II. BACKGROUND AND PREVIOUS WORK

Craig Interpolation [9] is a popular abstraction technique
widely used in Model Checking. Given a pair of formulas
(A,B), Craig interpolant of (A,B) is a formula I such
that A → I , I ∧ B is unsatisfiable, and I contains only
free variables common to A and B. For an unsatisfiable
pair of formulas (A,B), an interpolant always exists [9].
As shown in [10], an interpolant can be constructed from a
proof of unsatisfiability by an algorithm referred as Pudák’s
algorithm. Although other algorithms exist, we will focus
on Pudlák’s throughout the paper. Interpolants are useful in
various verification gambits including refinement of predicate
abstraction [4], and bounded model checking [3] to name
a few. The following outlines how interpolation is used for
function summarization in BMC [7].

BMC is aimed at searching for errors in a program within
the given number (bound) of loop iterations and recursion
depth. First, it unwinds the program according to the bound.
Second, it constructs the Static Single Assignment (SSA) form
of the program, supplies it with the negated property to be
checked, and encodes it into a logical formula, a BMC formula.
The formula is satisfiable if and only if an error is reachable
in the unwound program. If the formula is satisfiable, a
satisfying assignment identifies a trace leading to an error.
If unsatisfiable, the program is safe.

Standard BMC constructs a monolithic BMC formula where
all function calls are inlined. In order to make interpolation
applicable for extraction of function summaries, we construct
BMC formula so that each function call is represented by
a separate conjunct, and call it a partitioned BMC (PBMC)
formula. To describe construction of PBMC formula in more
details, we use the notion of an unwound program in terms of
its call tree.

An unwound program for a bound ν is a tuple Pν =
(F, fmain), s.t. F is a finite set of functions, fmain ∈ F is
an entry point and every loop and recursive call is unrolled
(unwound) ν times. In addition, we define a relation child
⊆ F × F which relates each function f to all the functions
invoked by f . Relation subtree ⊆ F ×F is a transitive closure
of child. F̂ denotes the finite set of unique function calls,
with f̂main being the implicit call to the program entry point.
The relations child and subtree are naturally extended to F̂ ,
s.t. ∀f̂ , ĝ ∈ F̂ : child(f̂ , ĝ) → child(f, g), and subtree is a
transitive closure of the extended relation child. A summary
of a function is a relation over its input and output variables,
which over-approximates the precise behavior of the given
function. This means that a summary contains all possible
behaviors of the function (under the given bound ν) and
possibly more. We use S to denote the set of all summaries.

Algorithm 1 summarizes the method for construction of
function summaries in BMC. There are two major differences
from the standard BMC algorithm that should be pointed out.
First, the PBMC formula is constructed as a conjunction of
parts representing individual functions. Second, function sum-
maries are extracted using interpolation for every individual
part of the PBMC formula.

PBMC formula construction (line 1). The PBMC formula
is constructed in the recursive method CreateFormula as
follows.

CreateFormula(f̂) , φf̂∧∧
ĝ∈F̂ :child(f̂ ,ĝ)

CreateFormula(ĝ)

For a function call f̂ ∈ F̂ , the formula is constructed by
conjunction of the partition φf̂ reflecting the body of the
function and a separate partition for every nested function call.
The logical formula φf̂ is constructed from the SSA form of
the body of the function f . The bodies of the nested calls
are encoded into separate logical formulas (using a recursive
call to CreateFormula) and thus separate partitions in
the resulting PBMC formula. In addition, φf̂ contains spe-
cial propositional symbols to bind the individual partitions
together. An example of such a symbol is errorf̂ , which is
constrained to be true if and only if the function call f̂ results
in an error. Consequently, errorf̂main

encodes reachability of
an error in the entire program.

Summarization (line 6). If the PBMC formula is unsat-
isfiable, i.e., the program is safe, the algorithm proceeds
with interpolation. The function summaries are constructed
as interpolants from a proof of unsatisfiability of the PBMC

Algorithm 1: Function summarization in BMC [7]
Input: Unwound program Pν = (F, fmain) with function

calls F̂
Output: Verification result: {SAFE, UNSAFE}, mapping

of function calls to their summaries summaries
Data: φ: PBMC formula

1 φ← CreateFormula(f̂main) ∧ errorf̂main
;

2 result, proof ← Solve(φ) ; // run SAT-solver

3 if result = SAT then
4 return UNSAFE;

5 foreach f̂ ∈ F̂ do // extract summaries

6 summaries(f̂)← Interpolate(proof, f̂);
7 end
8 return SAFE;

formula. In order to generate the interpolant, for each function
call f̂ the PBMC formula is split into two parts. First, φsubtree

f̂

corresponds to the partitions representing the function call f̂
and all the nested functions. Second, φenv

f̂
corresponds to the

context of the call f̂ , i.e., to the rest of the encoded program.

φsubtree
f̂

,
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)

φĝ

φenv
f̂

, errorf̂main
∧

∧
ĥ∈F̂ :¬subtree(f̂ ,ĥ)

φĥ

Therefore, for each function call f̂ , the Interpolate
method separates the PBMC formula into A ≡ φsubtree

f̂
and

B ≡ φenv
f̂

and generates an interpolant If̂ for the pair (A,B).
Such interpolant If̂ is a summary for the function f . The
generated interpolants are associated with the function calls
by a mapping1 summaries: F̂ → S, i.e., summaries(f̂) = If̂ .

Refinement. When the same program is being verified again
(e.g., with respect to a different property), the exact function
calls can be substituted by the constructed summaries. In
this case, the method CreateFormula of Algorithm 1 is
replaced by the following:

CreateFormula(f̂) , φf̂ ∧(∧
ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=inline

CreateFormula(ĝ)
)

(∧
ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=sum

summaries(ĝ)
)

where a substitution scenario Ω : F̂ → {inline, sum, havoc}
determines how each function call should be handled. Initially,
Ω depends on existence of function summaries. If a summary
of a function exists, it is used to represent the function - sum. If

1Here, we consider only a single summary per a function call for the sake
of simplicity. This still means multiple summaries per a single function called
multiple times. Our prototype implementation does not have this restriction.

not, the function is either represented precisely - inline (eager
scenario), or abstracted away - havoc (lazy scenario).

If the resulting formula is satisfiable, it may be due to
too coarse summaries. Refinement, first, identifies which sum-
maries affect satisfiability of the PBMC formula. This is
done by analyzing the occurrence of summaries along an
error trace, determined by a satisfying assignment and by
dependency analysis. Second, the refined substitution scenario
Ω′ is constructed from Ω by mapping the function calls
corresponding to the identified summaries to inline. Then, the
next iteration of the algorithm is run using Ω′. If no summary
is identified for refinement, the error is real.

III. UPGRADE CHECKING

This section describes our solution to the upgrade check-
ing problem, the incremental summary-based model checking
algorithm. As an input, the algorithm takes two versions of
the system, old and new, and the function summaries of the
old version. If the old version or its function summaries are
not available (e.g., for the initial version of the system), a
bootstrapping verification run is needed to analyze the entire
new version of the system and to generate the summaries,
which are then maintained during the incremental runs.

The incremental upgrade check is performed in two phases.
First, in the preprocessing phase, the two versions are com-
pared at the syntactical level. This allows identification of
functions that were modified (or added) and which summaries
need rechecking (or they even do not exist yet). An additional
output of this phase is an updated mapping summaries, which
maps function calls in the new version to the old summaries.

For example, Figure 1-a depicts an output of the preprocess-
ing, i.e., a call tree of a new version with two changed function
calls (gray fill). Their summaries need rechecking. In this
case, all function calls are mapped to the corresponding old
summaries (i.e., functions were possibly removed or modified,
but not added). Summaries of all the function calls marked by
a question mark may yet be found invalid. Although the code
of the corresponding functions may be unchanged, some of
their descendant functions were changed and may eventually
lead to invalidation of the ancestor’s summary.

In the second phase, the actual upgrade check is performed.
Starting from the bottom of the call tree, summaries of all
functions marked as changed are rechecked. That is, a cheap
local check is performed to show that the corresponding
summary is still a valid over-approximation of the function’s
behavior. If successful, the summary is still valid and the
change (i.e., rightmost node in Figure 1-b) does not affect
correctness of the new version. If the check fails, the summary
is invalid for the new version and the check needs to be
propagated to the caller, towards the root of the call tree
(Figure 1-b,c). When the check fails for the root of the call
tree (i.e., program entry point f̂main), a real error is identified
and reported to the user. The following first presents this basic
algorithm in more details and then describes its optimization
with a refinement loop and proves its correctness. Note that
we will describe the upgrade checking algorithm instantiated

Algorithm 2: Upgrade checking algorithm
Input: Unwound program Pν = (F, fmain) with function

calls F̂ , mapping summaries : F̂ → S, set
changed ⊆ F̂

Output: Verification result: {SAFE, UNSAFE}
Data: D ⊆ F̂ : function calls to recheck, φ: PBMC

formula, invalid ⊆ S: set of invalid summaries

1 D ← {f̂ | f̂ ∈ changed}, invalid← ∅;
2 while D 6= ∅ do
3 choose f̂ ∈ D, s.t. ∀ĥ ∈ D : ¬subtree(f̂ , ĥ);
4 D ← D \ {f̂};

5 if f̂ ∈ dom(summaries) then
6 φ← CreateFormula(f̂);
7 result, proof ← Solve(φ ∧ ¬summaries(f̂));

8 if result = UNSAT then
9 for ĝ ∈ F̂ : subtree(f̂ , ĝ) ∧ (ĝ /∈

dom(summaries) ∨ summaries(ĝ) ∈ invalid)
do

10 summaries(ĝ)← Interpolate(proof, ĝ);
11 end
12 continue;

13 end
14 invalid← invalid ∪ {summaries(f̂)};
15 end

16 if f̂ = f̂main then
17 return UNSAFE; // real error found

18 D ← D ∪ {parent(f̂)}; // check parent
19 end
20 return SAFE; // system is safe

in the context of bounded model checking. However, the algo-
rithm is more general and can be applied in other approaches
relying on over-approximative function summaries.

A. Basic Algorithm

We proceed by presenting the basic upgrade checking
algorithm (Alg. 2). As an input, Alg. 2 takes the unwound
new version of the program, a mapping summaries from the
function calls in the new version to the summaries from the
old version, and a set changed marking the function calls
corresponding to the functions that were changed or added
in the new version (as an output of the preprocessing).

The algorithm keeps a set D of function calls that require
rechecking. Initially, this set contains all the function calls
marked by changed (line 1). Then the algorithm repeatedly
removes a function call f̂ from D and attempts to check
validity of the corresponding summary in the new version.
Note that the algorithm picks f̂ so that no function call in the
subtree of f̂ occurs in D (line 3). This ensures that summaries
in the subtree of f̂ were already analyzed (shown either valid
or invalid).

The actual summary validity check occurs on lines 6,
7. First, the PBMC formula encoding the subtree of f̂ is
constructed and stored as φ. Then, conjunction of φ with a
negated summary of f̂ is passed to a solver for the satisfiability
check. If unsatisfiable, the summary is still a valid over-
approximation of the function’s behavior. Here, the algorithm
obtains a proof of unsatisfiability which is used later to create
new summaries to replace the invalid or missing ones (line 9-
11). If satisfiable, there is a combination of inputs and outputs
of the function f that is not covered by its original summary,
thus the summary is not valid for the new version (line 14).
In this case, either a real error is identified (lines 16, 17) or
the check is propagated to the function caller (line 18).

Note that if the chosen function call f̂ has no summary, e.g.,
due to being a newly added function, the check is propagated
to the caller immediately (condition at line 5) and the summary
of f̂ is created later when the check succeeds for an ancestor
function call.

The algorithm always terminates with either SAFE or
UNSAFE value. Creation of each PBMC formula terminates
because they operate on the already unwound program. The
algorithm terminates with SAFE result (line 20) when all func-
tion calls requiring rechecking were analyzed (line 2). Either
all the summaries possibly affected by the program change
are immediately shown to be still valid over-approximations
(see Figure 2-a) or some are invalid but the propagation stops
at a certain level of the call tree and new valid summaries
are generated (see Figure 2-b). The algorithm terminates with
UNSAFE result (lines 18), when the check propagates to the
call tree root, f̂main, and fails (see Figure 2-c). In this case, a
real error is encountered and reported to the user.

B. Optimization and Refinement

To optimize the upgrade check, old function summaries
can be used to abstract away the function calls. Consider the
validity check of a summary of a function call f̂ . Suppose
there exists a function call ĝ in the subtree of f̂ together with
its old summary, already shown valid. Then this summary can
be substituted for ĝ, while constructing the PBMC formula of
f̂ (line 6). This way, only a part of the subtree of f̂ needs
to be traversed and the PBMC formula φ can be substantially
smaller compared to the encoding of the entire subtree.

If the resulting formula is SAT, it can be either due to
a real violation of the summary being checked or due to
too coarse summaries used to substitute some of the nested
function calls. In our upgrade checking algorithm, this is
handled in similar way as in the refinement of the standalone
verification by analyzing the satisfying assignment. The set of
summaries used along the counter-example is identified. Then
it is further restricted by dependency analysis to only those
possibly affecting the validity. Every summary in the set is
marked as inline in the next iteration. If the set is empty, check
fails and the summary is shown invalid. This refinement loop
(replacing lines 6, 7 in Alg. 2) iterates until validity of the
summary is decided.

valid summary nondet summary
affected summary

validated/new summary
invalid summary

(a) (b) (c)

changed function

Figure 1: Progress of the upgrade checking algorithm; the faded parts of the call tree were not yet analyzed by the algorithm

(a) (b) (c)

Figure 2: Sample outcomes of Alg. 2; analyzing the faded parts of call tree is not required to decide safety of the upgrade

This optimization does not affect termination of the algo-
rithm (in each step at least one of the summaries is refined).
Regarding complexity, in the worst case scenario, i.e. when a
major change occurs, the entire subtree is refined one summary
at a time for each node of the call tree. This may result in a
number of solver calls quadratic in the size of the call tree,
where the last call is as complex as the verification of the entire
program from scratch. This paper focuses on incremental
changes and thus for most cases there is no need for the
complete call graph traversal. Moreover, the quadratic number
of calls can be easily mitigated by limiting the refinement
laziness using a threshold on the number of refinement steps
and disabling this optimization when the threshold is exceeded.

C. Correctness

This section demonstrates the correctness of the upgrade
checking algorithm, i.e., given an unwinding bound ν, the
algorithm always terminates with the correct answer w.r.t. ν.
Note that throughout this section, program safety is understood
considering the bound ν2. Also, we use σf̂ as a shortcut for
summaries(f̂). The key insight for the correctness is that after
each successful run of Alg. 2 (i.e., when SAFE is returned),
the following two properties are maintained.

errorf̂main
∧ σf̂main

→ ⊥ (1)

Given each function call f̂ and its children calls ĝ1, . . . , ĝn:

σĝ1 ∧ . . . ∧ σĝn ∧ φf̂ → σf̂ (2)

2We expect the same ν for the old and new version. To keep correctness,
if the user increases the bound for a specific loop, the corresponding function
has to be handled as if modified.

The following theorem is required to prove the correctness
of Alg. 2. It considers properties of interpolants (also known
as tree interpolants) generated from the same resolution proof
using Pudlák’s algorithm [10].

Theorem 1. Let X1 ∧ . . . ∧Xn ∧ Y ∧ Z be an unsatisfiable
formula and let IX1

, . . ., IXn
, and IXY be Craig interpolants

for pairs (X1, X2 ∧ . . . ∧Xn ∧ Y ∧ Z), . . ., (Xn, X1 ∧ . . . ∧
Xn−1 ∧ Y ∧ Z), and (X1 ∧ . . . ∧ Xn ∧ Y,Z) respectively,
derived using Pudlák’s algorithm over a resolution proof P.
Then (IX1 ∧ . . . ∧ IXn ∧ Y)→ IXY .

We will first state and prove a version of Theorem 1 limited
to two partitions and then generalize.

Lemma 1. Let X ∧Y ∧Z be an unsatisfiable formula and let
IX , IY , and IXY be Craig interpolants for pairs (X,Y ∧Z),
(Y,X∧Z), and (X∧Y,Z) respectively, derived using Pudlák’s
algorithm over a resolution proof P. Then (IX ∧ IY)→ IXY .

Proof: By structural induction over the resolution proof,
we show that (IX ∧ IY) → IXY for all partial interpolants
at all nodes of the proof P. As a base case, there is a clause
C and we need to consider three cases: C ∈ X , C ∈ Y , and
C ∈ Z. When C ∈ X , we have (false ∧ true) → false,
which holds. The case C ∈ Y is symmetric. When C ∈ Z,
we have (true∧ true)→ true, which again obviously holds.

As an inductive step, we have a node C1 ∨C2 representing
resolution over a variable x with parent nodes x∨C1 and ¬x∨
C2. From the inductive hypothesis, we have partial interpolants
I1
X , I1

Y , and I1
XY for the node x∨C1 so that (I1

X∧I1
Y)→ I1

XY

and partial interpolants I2
X , I2

Y , and I2
XY for the node ¬x∨C2

so that (I2
X ∧ I2

Y)→ I2
XY . We need to consider the different

cases of coloring of x based on its occurrence in different

Table I: Variable classes; a, b: x occurs only in A, resp. B,
ab: x occurs in both A and B

x in class of x for partial interpolant
IX IY IXY

X a b a
Y b a a
Z b b b

X + Y ab ab a
X + Z ab b ab
Y + Z b ab ab

X + Y + Z ab ab ab

subsets of the parts of the formula X ∧ Y ∧Z. The cases are
summarized in Table I. In case x ∈ X , we have:

IX ≡ I1
X ∨ I2

X , IY ≡ I1
Y ∧ I2

Y

IXY ≡ I1
XY ∨ I2

XY

Using the inductive hypothesis, we have ((I1
X ∨ I2

X) ∧ I1
Y ∧

I2
Y)→ (I1

XY ∨I2
XY), which is the required claim (IX∧IY)→

IXY . The case x ∈ Y is symmetric.
In case x ∈ Z, we have:

IX ≡ I1
X ∧ I2

X , IY ≡ I1
Y ∧ I2

Y

IXY ≡ I1
XY ∧ I2

XY

Using the inductive hypothesis, we have (I1
X∧I2

X∧I1
Y ∧I2

Y)→
(I1
XY ∧ I2

XY), which is the required claim (IX ∧ IY)→ IXY .
In case x ∈ X + Y + Z, using sel(x, S, T) as a shortcut

for (x ∨ S) ∧ (¬x ∨ T), we get:

IX ≡ sel(x, I1
X , I

2
X), IY ≡ sel(x, I1

Y , I
2
Y)

IXY ≡ sel(x, I1
XY , I

2
XY)

Using the inductive hypothesis and considering both possible
values of x, we have (sel(x, I1

X , I
2
X) ∧ sel(x, I1

Y , I
2
Y)) →

sel(x, I1
XY , I

2
XY), which is the required claim (IX ∧ IY) →

IXY . The other cases where x ∈ X+Y or x ∈ X+Z or x ∈
Y +Z are subsumed by this case as (P∧Q)→ sel(x, P,Q)→
(P ∨Q). Structural induction yields (IX ∧IY)→ IXY for the
root of the proof tree and for the final interpolants.

When we apply the result of Lemma 1 iteratively, we obtain
a generalized form for cases using multiple interpolants mixed
with original parts of the formula, i.e., a proof of Theorem 1.

Proof: By iterative application of Lemma 1, we get (IX1
∧

. . .∧ IXn
∧ IY)→ IXY , where IY is Craig interpolant for the

pair (Y,X1 ∧ . . .∧Xn ∧Z) derived using Pudlák’s algorithm
over the resolution proof P. Using Y → IY , we obtain the
claim (IX1

∧ . . . ∧ IXn
∧ Y)→ IXY .

In the following two lemmas, we first show that the proper-
ties (1, 2) hold after an initial whole program check. Then we
show that the properties are maintained between the individual
successful upgrade checks.

Lemma 2. After an initial whole-program check, the proper-
ties (1, 2) hold over the call tree annotated by the generated
interpolants.

Proof: Recall that the summaries are constructed only
when the program is safe. In other words, errorf̂main

∧φsubtree
f̂main

→

⊥. Thus, by definition of interpolation, errorf̂main
∧ If̂main

is ob-
viously unsatisfiable, i.e., the property (1) holds. The property
(2) follows from Theorem 1. It suffices to choose Xi ≡ φsubtree

ĝi
for i ∈ 1..n, Y ≡ φf̂ , and Z ≡ φenv

f̂
.

Lemma 3. The properties (1, 2) are reestablished whenever
the upgrade checking algorithm successfully finishes (SAFE is
returned).

Proof: The property (1) could be affected only when
the summary of f̂main is recomputed (line 8). However, this
happens only when we are checking the root of the tree and,
at the same time, the check succeeds (line 10). Therefore, by
definition of interpolation, the property (1) is maintained.

If Alg. 2 successfully finishes, then each function call f̂
with an invalidated summary must have been assigned a new
summary σf̂ (line 10) when some of its ancestors ĥ passed the
summary validity check (line 8). Otherwise, the invalidation
would propagate to the root of the call tree and eventually
produce an UNSAFE result. Therefore, it suffices to show that
the newly generated interpolants satisfy the property (2). For
this purpose, we can use the same argument as in the proof of
Lemma 2, again relying on Theorem 1. Note that if any already
valid summaries are used in the summary validity check, we
keep those (see condition on line 9) instead of generating new
ones. This is sound as we know that σĝi → IXi , which is
consistent with our claim. Analogically, we also keep the old
summary σĥ for the root of the subtree that passed the check
and caused generation of the new summaries. This is sound
as Iĥ → σĥ is implied by the summary validity check.

We now show that the properties (1, 2) are strong enough
to show that the entire program is safe.

Theorem 2. When the program call tree annotated by in-
terpolants satisfies the properties (1, 2), then errorf̂main

∧
φsubtree
f̂main

→ ⊥ (i.e., the entire program is safe).

Proof: The property (1) yields errorf̂main
∧ σf̂main

→ ⊥.
Repeated application of the property (2) to substitute all
interpolants on the right hand side yields the claim errorf̂main

∧
φsubtree
f̂main

→ ⊥.

We proved correctness of the upgrade checking algorithm
in the context of bounded model checking and interpolation-
based function summaries. The upgrade checking algorithm,
however, is not bound to this context and can be employed also
in other verification approaches based on over-approximative
function summaries (including the use of other interpolation
algorithms). The key ingredient of the correctness proof, the
property (2), has to be ensured for the particular application.

IV. EVALUATION

We implemented a prototype, eVolCheck, of the upgrade
checking algorithm for incremental verification. It performs
the checks of upgrades using outputs of the previous check and
provides its own outputs to the next one. The required input
is function summaries of the previous version. eVolCheck
communicates with FunFrog [7] for bootstrapping (to create

function summaries of the original code) and exploits its
interface with the OpenSMT solver [11] to solve a PBMC
formula, encoded propositionally, and to generate interpolants.
Altogether, the tool implements two major tasks: syntactic
difference check, and the actual upgrade check.

For the first task, we implemented a syntactic difference
tool called goto-diff. First, goto-diff extracts inter-
mediate representations of a pair of (old and new) programs
expressed in simple statements (assignments, guards, gotos,
function calls) and constructs a so called goto-binary.
For this, we use the goto-cc3 verification front-end. Since,
goto-binary is a semantically clean representation of the
source code, some syntactically different programs may result
in an equivalent representation, i.e., some refactoring changes
may be shown safe already at this stage without running the
upgrade checking algorithm. Second, goto-diff compares
the call trees of the programs. For each pair of matching func-
tions, goto-diff analyzes their bodies.4 Unreachable func-
tions of the programs are not processed. Finally, goto-diff
outputs the new call tree, marked by old summaries and the
changed set of modified functions. Afterwards, eVolChecks
performs the actual upgrade check by following the steps of
Alg. 2. After its completion, the result of the change validation
is returned to the user. If the upgrade is unsafe, an error is
displayed, and the user is expected to fix the error. After the
fix is done, it should be checked based on the latest correct
version. Otherwise, the program is correct, the new call tree
and the summaries are stored for the use by the next upgrade
checking run.

Experiments. We evaluated eVolCheck on a set of industrial
benchmarks. Four of them (VTT_n) were provided by our
industrial partner, the VTT company. The rest is derived from a
library of Windows device drivers (floppy_n, kbfiltr_n,
diskperf_n). Safety of all benchmarks was verified against
assertions, either existing in the code or inserted by us into
code without assertions. Table II contains results of the ex-
periments. Each row corresponds to a different benchmark,
groups of columns represent statistics about the bootstrapping
verification and verification of two upgrades, respectively. NoI
estimates the size of the original source code as a number
of instructions in the goto-binary (NoI is an accurate
representation of code without definitions, and often represents
much higher number of lines of code). The overhead intro-
duced by upgrade checking, i.e. the syntactic difference check
(Diff) and the interpolants generation (Itp), is also included
in the total running time (Total). To show advantages of our
upgrade checking approach, for each change we calculated the
speedup (Speedup) of the upgrade check versus verification of
the changed code from scratch, performed only for the sake
of comparison reasons and not displayed in the table.

In order to demonstrate different performance of our tech-
nique, we chose two different classes of changes for each
benchmark. The first class (1st change) represents changes

3http://www.cprover.org/goto-cc/
4Two functions match iff their signatures are the same (function name,

types and order of arguments, and return type).

with small impact. As expected, those can be verified with
a few local checks. The second one (2nd change) presents
upgrades that affect large portion of the code, potentially
causing traversal of the complete call tree of the program.

Our experiments demonstrate that for the class of problem
with small impact, the upgrade checking approach outperforms
the standalone verification (order(s) of magnitude speedup).
For the second class of changes, the performance of the
upgrade check varies. For some cases, analysis could be done
locally and the speedup is still substantial. For cases where
the algorithms needed to analyze large portion of the call
tree, the performance, as expected, degrades. Note that the
bad performance occurs when the change introduces a bug
(indicated by ‘—’ in the Itp column; the PBMC formula is
satisfiable and iterpolants are not generated). In this case,
the upgrade check traverses to the root of the call tree, in
order to reconstruct a complete error trace. Of course, this
can be an easy task when the change is close to the root of
the call tree (e.g., in the floppy_D benchmark). The results
support our initial intuition that upgrade checking works well
for incremental changes, which is the most common class in
the evolution of systems.

V. RELATED WORK

The area of software upgrade checking is not as studied
as model checking of standalone programs. The idea of an
upgrade check that reuses information learned during analysis
of the previous program version was employed in [12]. The
authors consider the problem of substitutability of updated
components of a system. Their algorithm is based on inclusion
of behaviors and uses a CEGAR loop combining over- and
under-approximations of the component behaviors. First, a
containment check is performed, i.e., it is checked that every
behavior of the old component occurs also in the new one.
Second, they use a learning-based assume-guarantee reasoning
algorithm in order to check compatibility, i.e., that the new
component satisfies a given property when the old component
does. When compared, our approach focuses on real low-level
properties of code expressed as assertions rather than abstract
inclusion of behaviors. The use of interpolants also appears to
be a more practical approach as compared to the application
of learning regular languages techniques employed in [12].

The authors of [13] study effects of code changes on
function summaries used in compositional directed testing
(a.k.a. white-box fuzzing). They use notion of must summaries
as an under-approximation of the behavior. The goal of [13]
is to identify summaries that were affected by the change and
cannot be used to analyze the new version. Then the actual
testing is performed using the preserved summaries. Our algo-
rithm differs by using over-approximative interpolation-based
function summaries and by performing the actual verification
during the analysis.

Another group of related work aims at equivalence checking
of programs [14], [15], [16]. Differential Symbolic Execu-
tion [14] attempts to show equivalence of two versions of code
using symbolic execution or to compute a behavioral delta

Table II: Experimental evaluation

benchmark bootstrap 1st change 2nd change
name NoI Total [s] Itp [s] Total [s] Diff [s] Itp [s] Speedup Total [s] Diff [s] Itp [s] Speedup
VTT_A 329 4.889 0.133 0.318 0.006 <0.001 15.6x 15.102 0.006 — 0.3x
VTT_B 332 23.178 0.003 7.793 0.007 0.007 3.0x 7.805 0.007 0.014 3.0x
VTT_C 129 0.144 0.001 0.017 0.002 <0.001 8.4x 0.187 0.002 — 0.8x
VTT_D 247 24.735 0.001 0.008 0.008 <0.001 3098.0x 46.910 0.006 — 0.8x
floppy_A 292 1.025 0.015 0.039 0.009 0.002 26.1x 0.201 0.009 0.013 5.0x
floppy_B 294 0.763 0.003 0.038 0.009 <0.001 19.8x 0.046 0.009 0.001 16.4x
floppy_C 2082 1.280 0.004 0.383 0.182 <0.001 3.4x 0.394 0.183 0.001 3.2x
floppy_D 2099 60.469 0.257 0.374 0.182 <0.001 161.7x 3.614 0.189 — 16.8x
kbfiltr_A 529 1.307 0.014 0.030 0.011 <0.001 43.1x 0.111 0.012 0.006 10.6x
kbfiltr_B 529 1.040 0.001 0.052 0.011 0.001 19.6x 1.835 0.011 — 0.6x
kbfiltr_C 1010 2.522 0.014 0.063 0.021 0.002 40.2x 0.124 0.021 0.002 20.3x
kbfiltr_D 1011 3.060 0.009 0.061 0.022 <0.001 50.5x 0.231 0.022 0.003 7.0x
diskperf_A 486 1.028 0.001 0.033 0.008 <0.001 31.3x 1.751 0.008 — 0.6x
diskperf_B 492 2.580 0.049 0.091 0.009 0.006 28.3x 2.468 0.009 0.029 1.1x
diskperf_C 1664 1.126 0.001 0.072 0.034 <0.001 15.6x 0.097 0.034 0.001 11.5x
diskperf_D 1685 38.609 1.179 0.295 0.035 0.016 130.4x 0.508 0.035 0.020 75.7x

when not equivalent. The comparison is function-by-function,
the unchanged portions of code are abstracted by the same
uninterpreted functions. A similar approach is implemented in
the SymDiff tool [15], which decides conditional partial equiv-
alence, i.e., equivalence under certain input constraints. More-
over, SymDiff also allows extraction of the constraints and
reports them to the user. Regression Verification [16] employs
model checking to prove partial equivalence of programs. As
in our algorithm, regression verification starts with syntactic
difference check, that identifies the set of modified functions.
Then it also traverses the call graph bottom-up, and separately
checks equivalence between the old and new versions of the
of functions, while other functions are abstracted again using
the same uninterpreted functions. In these approaches, if the
versions do differ, the user is alerted and possibly informed
what the different output is and for which input it occurs.
For evolving systems, the versions almost always differ and
thus the user is distracted by many such reports. In contrast,
our algorithm focuses on checking safety of the versions with
respect to assertion violation and the user is only alerted
when a new violation is introduced by the change. Also, our
approach may skip processing parts of the program, if they do
not influence safety of the code.

Last group of related work includes approaches using
interpolation-based function summaries (such as [4], [5], [6]).
Although these do not consider upgrade checking, we believe
that our incremental algorithm may be instantiated in their
context similar to how we instantiated it in the context of [7].

VI. CONCLUSION

We presented a new upgrade checking algorithm using
interpolation-based function summaries. Instead of model
checking the entire new version of a program, the modified
functions are first compared against their over-approximative
summaries from the old version. If this local check succeeds,
the upgrade is safe. We proved that the proposed algorithm
is sound, if the summaries are generated from the same proof
using the original Pudlák’s algorithm. Experimental evaluation
using our prototype implementation supports our intuition

about ability to check system upgrades locally and demon-
strates that the algorithm significantly speeds up checking
programs with incremental changes.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Tools and Alg. for the Const. and Anal. of
Systems (TACAS ’99), vol. 1579 of LNCS, pp. 193–207, 1999.

[2] S. Graf and H. Saı̈di, “Construction of Abstract State Graphs with PVS,”
in Computer Aided Verification, CAV ’97, LNCS, pp. 72–83, 1997.

[3] K. L. McMillan, “Applications of Craig Interpolation in Model Check-
ing,” in Tools and Alg. for the Const. and Anal. of Systems (TACAS ’05),
vol. 3440 of LNCS, pp. 1–12, 2005.

[4] K. L. McMillan, “Lazy abstraction with interpolants,” in Computer
Aided Verification (CAV ’06), vol. 4144 of LNCS, pp. 123–136, 2006.

[5] K. L. McMillan, “Lazy annotation for program testing and verification,”
in Computer Aided Verification (CAV’ 10), vol. 6174 of LNCS, pp. 104–
118, 2010.

[6] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Whale: An
Interpolation-Based Algorithm for Inter-procedural Verification,” in Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI ’12),
vol. 7148 of LNCS, pp. 39–55, 2012.

[7] O. Sery, G. Fedyukovich, and N. Sharygina, “Interpolation-based func-
tion summaries in bounded model checking,” in Haifa Verification
Conference (HVC ’01), 2011. (to appear).

[8] D. Babić and A. J. Hu, “Structural Abstraction of Software Verification
Conditions,” in Computer Aided Verification (CAV ’07), vol. 4590 of
LNCS, pp. 371–383, 2007.

[9] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” J. of Symbolic Logic, vol. 22, no. 3,
pp. 269–285, 1957.

[10] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” J. of Symbolic Logic, vol. 62, no. 3, pp. 981–
998, 1997.

[11] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The OpenSMT
Solver,” in Tools and Alg. for the Const. and Anal. of Systems (TACAS
’10), vol. 6015 of LNCS, pp. 150–153, 2010.

[12] S. Chaki, E. Clarke, N. Sharygina, and N. Sinha, “Dynamic Component
Substitutability Analysis,” in Int. Symp. of Formal Methods Europe (FM
’05), vol. 3582 of LNCS, pp. 512–528, Springer, 2005.

[13] P. Godefroid, S. K. Lahiri, and C. Rubio-González, “Statically Vali-
dating Must Summaries for Incremental Compositional Dynamic Test
Generation,” in Static Anal. Symp. (SAS ’11), vol. 6887 of LNCS, 2011.

[14] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu, “Differential
symbolic execution,” in Foundations of SW Engineering (FSE ’08),
pp. 226–237, 2008.

[15] M. Kawaguchi, S. K. Lahiri, and H. Rebelo, “Conditional equivalence,”
Tech. Rep. MSR-TR-2010-119, Microsoft Research, 2010.

[16] B. Godlin and O. Strichman, “Regression verification,” in Design
Automation Conference (DAC ’09), pp. 466–471, 2009.

	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

