Loopfrog: A Static Analyzer for ANSI-C Programs

Daniel Kroening*, Natasha SharyginaT, Stefano Tonetta, Aliaksei Tsitovich! and Christoph M. Wintersteiger§
* Computing Laboratory, Oxford University, Oxford, UK
f University of Lugano, Switzerland
Y Fondazione Bruno Kessler, Trento, Italy
§ Computer Systems Institute, ETH Zurich, Switzerland

Abstract—Practical software verification is dominated by
two major classes of techniques. The first is model checking,
which provides total precision, but suffers from the state space
explosion problem. The second is abstract interpretation, which
is usually much less demanding, but often returns a high
number of false positives. We present LOOPFROG, a static
analyzer that combines the best of both worlds: the precision of
model checking and the performance of abstract interpretation.
In contrast to traditional static analyzers, it also provides
‘leaping’ counterexamples to aid in the diagnosis of errors.

I. INTRODUCTION

Loops in programs are the Achilles’ heel of static analysis.
A sound analysis of all program paths through loops requires
either an explicit unwinding or an over-approximation (of
an invariant) of the loop. Unwinding is computationally too
expensive for many real programs, and the computation of
sufficiently strong invariants is an art.

LOOPFROG is an automatic bug-finding tool for ANSI-
C programs. Unlike traditional program approximation ap-
proaches (e.g. abstract interpretation [1]) it does not employ
iterative fixpoint computation, instead it uses a summariza-
tion algorithm [2] that non-iteratively computes symbolic ab-
stract transformers with respect to a set of abstract domains.
Summaries are shorter, loop-free program fragments, which
are used to substitute original loops to obtain a conservative
abstraction of the program. LOOPFROG computes abstract
transformers starting from the inner-most loop. It obtains a
loop invariant by checking if the constraints defined by a
chosen abstract domain are preserved by the loop. These
checks are performed by means of calls to a SAT-based
decision procedure, which allows us to check (possibly
infinite) sets of states with one query. Thus, unlike other
approaches [3], [4], LOOPFROG is not restricted to finite-
height domains.

When all the loops are summarized, the resulting over-
approximation of the program is handed to a bit-precise
model checker [5]. Due to the simplicity of the summarized
program, the state space explosion problem of the model
checker is avoided. A theoretical treatment of our algorithms
has been published before in [2]; in this paper we present
their implementation.

Supported by the Swiss National Science Foundation under grant
no. 200021-111687.

Related Work: Polyspace and Astrée are two well-
known static analysis tools that implement traditional ab-
stract interpretation. They are optimized for embedded con-
trol software. Both rely on iterative fixpoint computation,
and may require many iterations, depending on the com-
plexity of the program. Other tools include Calysto [6]
and Saturn [7]; both are more precise and scalable than
traditional static analyzers, and, just like LOOPFROG, imple-
ment bit-precise reasoning for all ANSI-C constructs. While
these tools also make use of loop and function summaries
with respect to an abstract domain, they trade soundness
for scalability, e.g., by unwinding loops a constant number
of times. Another tool for ANSI-C program analysis is
CBMC [8] — a bounded model checker that implements bit-
precise reasoning without abstraction. It unwinds loops up to
a pre-set bound and checks for assertion violations by means
of a SAT-based decision procedure. In practice, it often
needs to unwind loops up to a very high bound. For non-
terminating loops, it may not terminate at all. LOOPFROG
is partly based on CBMC’s symbolic execution engine, but
does not unwind loops.

II. LOOPFROG

The theoretical concept of symbolic abstract transformers
is implemented and put to use by our tool as outlined in
Fig. 1. As input, LOOPFROG receives a model file, extracted
from software sources by GOTO-CC!. This model extractor
features full ANSI-C support and simplifies verification of
software projects that require complex build systems. It
mimics the behaviour of the compiler, and thus ‘compiles’ a
model file using the original settings and options. Switching
from compilation mode to verification mode is thus achieved
by changing a single option in the build system. As sug-
gested by Fig. 1, all other steps are fully automated.

The resulting model contains a control flow graph and a
symbol table, i.e., it is an intermediate representation of the
original program in a single file. For calls to system library
functions, abstractions containing assertions (pre-condition
checks) and assumptions (post-conditions) are inserted. Note
that the model also contains the properties to be checked in
the form of assertions (calls to the ASSERT function).

Uhttp://www.cprover.org/goto-cc/

Model Extractor ANSI-C Sources

\

Preprocessing
) Abstract
Q“Oo Domains
& Y
g g
5 \ ini ©
: S
S &
& o $
o Loop Summarization &
g S
A, "]
g P N
2 2 =
< [=] =
& Z =
& 3 g
N = | E
e
Y Y

Verification Engine Verification Engine

\ LOOPFROG

\, ‘SAFE’ or

Leaping Counterexample

Figure 1. Architecture of LOOPFROG

Preprocessing: The instrumented model is what is
passed to the first stage of LOOPFROG. In this prepro-
cessing stage, the model is adjusted in various ways to
increase performance and precision. First, irreducible control
flow graphs are rewritten according to an algorithm due
to Ashcroft and Manna [9]. Like in a compiler, small
functions are inlined. This increases the model size, but also
improves the precision of subsequent analyses. After this,
LOOPFROG runs a field-sensitive pointer analysis. The infor-
mation obtained through this is used to insert assertions over
pointers, and to eliminate pointer variables in the program
where possible. On request, LOOPFROG automatically adds
assertions to verify the correctness of pointer operations,
array bounds, and arithmetic overflows.

Loop Summarization: Once the preprocessing is fin-
ished, LOOPFROG starts to replace loops in the program with
summaries. These are shorter, loop-less program fragments
that over-approximate the original program behaviour. To
accomplish this soundly [2], all loops are replaced with a
loop-less piece of code that ‘havocs’ the program state, i.e.,
it resets all variables that may be changed by the loop to
unknown values. Additionally, a copy of the loop body is
kept, such that assertions within the loop are preserved.

While this is already enough to prove some simple prop-
erties, much higher precision is required for more complex
ones. As indicated in Fig. 1, LOOPFROG makes use of
predefined abstract domains to achieve this. Every loop body
of the model is passed to a set of abstract domains, through

each of which a set of potential invariants of the loop is
derived (heuristically). In the current version, LOOPFROG
comes with a set of abstract domains that are specialized
to buffer-related properties, in order to demonstrate the
benefits of our approach on buffer-overflow benchmarks. For
example, there are constraints that are able to express that
an index into a buffer is always within the bounds of the
buffer (Table I gives more examples).

All potential invariants obtained from abstract domains
always constitute an abstract (post-)state of the loop body,
which may or may not be correct in the original program.
To ascertain that a potential invariant is an actual invariant,
LOOPFROG makes use of a verification engine. In the current
version, the symbolic execution engine of CBMC [8] is
used. This engine allows for bit-precise, symbolic reasoning
without abstraction. In our context, it always gives a definite
answer, since only loop-less program fragments are passed to
it. It is only necessary to construct an intermediate program
that assumes the potential invariant to be true, executes the
loop body once and then checks if the potential invariant still
holds. If the verification engine returns a counter-example,
we know that the potential invariant does not hold; in the
contrary case, however, it must be a true invariant and it is
subsequently added to the loop summary, since even after
the program state is havoced, the invariant still holds.

LOOPFROG starts this process from the innermost loop,
and thus there is never an intermediate program that contains
a loop. In case of nested loops, the inner loop is replaced
with a summary, before the outer loop is analyzed. Due to
this and the relative shortness of the fragments checked, the
verification engine always returns an answer quickly.

Verification: The result, after all loops have been sum-
marized, is a loop-less abstraction of the input program. This
abstract model is then handed to another verification engine.
Again, the verification time is much lower than that of the
original program, due to the model not containing any loops.
As indicated by Fig. 1, the verification engine used to check
the assertions in the abstract model, may be different from
the one used to check potential invariants. In our case, how-
ever, we chose to use the same, i.e., we employ the CBMC
symbolic execution engine. We do so for two reasons: 1) it
is very efficient and 2) it returns counterexamples in case of

Table 1
EXAMPLE DOMAINS FOR BUFFER-OVERFLOW ANALYSIS.

[# [Constraint [Meaning
1 ZTs String s is zero-terminated
2 Ly < Bg Length of s (Ls) is less than the size of the
allocated buffer (By)
3 0<i< L Bounds on integer variables ¢ (¢ is
4101 non-negative, ¢ is bounded by buffer
51 0<i<B;s size, etc.) k is an arbitrary integer
6 0<i:< Bs—k constant.
7 | 0 < offset(p) < B, Pointer offset bounds
8 | walid(p) Pointer p points to a valid object

Table II
A COMPARISON BETWEEN LOOPFROG AND AN INTERVAL DOMAIN: THE
COLUMN LABELLED ‘TOTAL’ INDICATES THE NUMBER OF PROPERTIES
IN THE PROGRAM, AND ‘FAILED’ SHOWS HOW MANY OF THE
PROPERTIES WERE REPORTED AS FAILING; ‘RATIO’ IS FAILED/TOTAL.

[LOOPFROG [[_Tnterval Domain__|

[Suite | k | Total || Failed | Ratio || Failed | Ratio |
behunk bchunk 96 8 0.08 34 0.35
freecell-solver make-gnome-freecell-board 145 40 0.28 140 0.97
freecell-solver make-microsoft-freecell-board 61 30 0.49 58 0.95
freecell-solver pi-make-microsoft-freecell-board 65 30 0.46 58 0.89
gnupg make-dns-cert 19 5 0.26 19 1.00
gnupg mk-tdata 6 0 0.00 6 1.00
inn encode 42 11 0.26 38 0.90
inn ninpaths 56 19 0.34 42 0.75
ncompress compress 204 38 0.19 167 0.82
texinfo makedoc 83 46 0.55 83 1.00
wu-ftpd ckconfig 1 1 1.00 1 1.00
wu-ftpd ftpcount 61 7 0.11 47 0.77
wu-fipd Tipshut 63 13 0.21 63 .00
wu-ftpd ftpwho 61 7 0.11 47 0.77

assertion violations. Those counterexamples do not contain
any information about the program states visited in loops
and are therefore called leaping counterexamples.

III. EXPECTED BENEFITS

Through the GOTO-CC model extractor, LOOPFROG al-
lows users to quickly switch from a compilation setting to a
verification setting. Compared to other static analyzers, the
‘verification overhead’ is kept minimal.

Traditional static analyzers are often impractical due to
their high false positive rates, while model checking is often
too demanding in terms of runtime. LOOPFROG provides a
solution to those problems by combining the two techniques
into one scalable, sound and precise analysis. The abstract
domains employed to achieve the precision are usually
simple and may be implemented with few lines of code.’

On top of this, LOOPFROG also provides leaping counter-
examples if it finds a bug — a definite advantage over many
other static analyzers based on traditional techniques, and
an invaluable aid in understanding why a bug is reported.

IV. EVALUATION AND AVAILABILITY

LOOPFROG was previously evaluated on a wide range of
benchmarks ranging from regression tests to independently
composed benchmarks suites [10] and large-scale open-
source software like GNUPG, INN, and WU-FTPD. It was
shown that it outperforms many other static analysis tools
in terms of performance and false positive rate [2].

To highlight the applicability of LOOPFROG to large-
scale software and to demonstrate its main advantage, we
present a new comparative evaluation against a simple
interval domain, which tracks the bounds of buffer index
variables, an often employed static analysis. For this exper-
iment, LOOPFROG was configured to use only two abstract
domains, which capture the fact that an index is within the
buffer bounds (#4 and #5 in Table I). As apparent from
Table II, the performance of LOOPFROG in this experiment
is far superior to that of the simple static analysis.

2Future versions of LOOPFROG will support custom domains.

We analyze a single benchmark in detail, in order to
explain the data delivered by the tool: The ncompress
program (version 4.2.4) contains about 2.2K lines of code
(which translates to 963 instructions in the model file) and
12 loops. During preprocessing, LOOPFROG detected 204
potential buffer overflows and inserted an assertion for each
of them in the model. Loop summarization took 14.4 sec-
onds. During this time, 67 invariant candidates were created
and 17 of them were confirmed as true invariants. The
overall analysis took 668 seconds.? Finally, 166 assertions
hold and 38 are reported as failing (while producing leaping
counterexamples for each violation).

To evaluate scalability, we applied other verification tech-
niques to this example. CBMC [8] tries to unwind all
the loops, but fails, reaching the 2GB memory limit. The
same behaviour is observed using SATABS [4], where the
underlying model checker (SMV) hits the memory limit.

LOOPFROG, extensive experimental data, and all our
benchmark and test files are available on-line for experi-
mentation by other researchers.*

REFERENCES

[1] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in POPL. ACM, 1977.

[2] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and
C. M. Wintersteiger, “Loop summarization using abstract
transformers,” in ATVA, ser. LNCS 5311. Springer, 2008.

[3] T. W. Reps, S. Sagiv, and G. Yorsh, “Symbolic Imple-
mentation of the Best Transformer,” in VMCAI, ser. LNCS.
Springer, 2004, pp. 252-266.

[4] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav,
“SATABS: SAT-based predicate abstraction for ANSI-C,” in
TACAS’05, 2005, pp. 570-574.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. MIT Press, 2000.

[6] D. Babi¢ and A. J. Hu, “Calysto: Scalable and Precise
Extended Static Checking,” in ICSE. ACM, 2008.

[71 A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and
P. Hawkins, “An overview of the Saturn project,” in PASTE.
ACM, 2007.

[8] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking
ANSI-C programs,” in TACAS, ser. LNCS 2988. Springer,
2004.

[9] E. Ashcroft and Z. Manna, “The translation of ’go to’
programs to ’while’ programs,” in Classics in software en-
gineering. Yourdon Press, 1979.

[10] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A buffer overflow
benchmark for software model checkers,” in ASE "07. ACM
Press, 2007, pp. 389-392.

30n an Intel Xeon 3.0GHz, 4GB RAM.
“http://www.verify.inf.unisi.ch/loopfrog/

