
Leveraging Interpolant Strength in Model
Checking

Simone Fulvio Rollini1, Ondrej Sery1,2, and Natasha Sharygina1

1 Formal Verification Lab, University of Lugano, Switzerland
{simone.fulvio.rollini,ondrej.sery,natasha.sharygina}@usi.ch

http://verify.inf.usi.ch
2 Dept. of Distributed and Dependable Systems, Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic
http://d3s.mff.cuni.cz

Abstract Craig interpolation is a well known method of abstraction
successfully used in both hardware and software model checking. The
logical strength of interpolants can affect the quality of approximations
and consequently the performance of the model checkers. Recently, it
was observed that for the same resolution proof a complete lattice of
interpolants ordered by strength can be derived.
Most state-of-the-art model checking techniques based on interpolation
subject the interpolants to constraints that ensure efficient verification
as, for example, in transition relation approximation for bounded model
checking, counterexample-guided abstraction refinement and function
summarization for software update checking. However, in general, these
verification-specific constraints are not satisfied by all possible inter-
polants.
The paper analyzes the restrictions within the lattice of interpolants
under which the required constraints are satisfied. This enables inves-
tigation of the effect of the strength of interpolants on the particular
techniques, while preserving their soundness. As an additional benefit,
combination of this result with proof manipulation procedures allows the
use of optimized solvers to generate interpolants of different strengths for
various model checking techniques.

1 Introduction

Craig interpolants [4] are commonly used for abstraction in hardware and soft-
ware model checking. Recently, it was shown [5] that for the same resolution
proof a complete lattice of interpolants ordered by the implication relation, i.e.,
strength, can be systematically derived. The strength of the interpolants may
influence speed of convergence of the model checking algorithms as well as the
amount of spurious behaviors that require refinement. The result in [5] shows
that there are interpolants of different strengths to choose from. However, [5]
opens two new research problems. First, it is not clear how to choose the right
interpolation algorithm for a particular model checking application. Second, if
a concrete application puts additional constraints on the interpolants, it is not



clear if the choice among interpolants of various strengths is restricted and how
much.

This paper presents a theoretical solution to the second problem. We iden-
tify two classes of common interpolation-based model checking approaches that
indeed put additional requirements on the interpolants. Then we formally deter-
mine and prove the restrictions for both classes on the choice of the interpolants
strength under which these requirements are satisfied.

The first class of approaches concerns simultaneous abstraction by multiple
interpolants. In this scenario, we have an unsatisfiable formula in the form of a
conjunction of subformulae. From the proof of unsatisfiability, we compute inter-
polants abstracting the different conjuncts. The additional requirement (Req1 )
is ensuring unsatisfiability of the original formula with multiple conjuncts re-
placed by the corresponding interpolants. A notable example of this setting is
the approach presented in [8], where the abstract transition relation is itera-
tively refined using interpolants. The authors notice the requirement imposed
on the interpolants, and observe it satisfied while implicitly assuming the use
of the interpolation algorithm of [10]. However, [8] is restricted to a single in-
terpolant generated by this algorithm. Our solution overcomes this limitation
by showing formally how to generate interpolants of different strength that sat-
isfy the requirement. Interestingly, we discovered that not all interpolants do.
Another application is software update checking, where the formula represents
the original program with different conjuncts representing different functions as,
e.g., in [16]. When a subset of functions is updated due to code changes and
fixes, this approach checks if the interpolants remain valid abstractions of the
new function bodies. This is a local check to show that a formula representing
the new function body still implies the corresponding interpolant. If the check
succeeds, unsatisfiability of the formula with multiple conjuncts replaced by the
corresponding interpolants (Req1) provides correctness of the updated system
without the need to check the entire formula of the updated system again.

The second class of model checking methods is typical of counterexample-
guided abstraction refinement (CEGAR) [3]. Given a spurious error trace, the
goal is to annotate nodes of an abstract reachability tree with an inductive se-
quence of formulae that together rule out the trace. The spurious error trace is
represented by an unsatisfiable path formula, constructed from the SSA form of
the trace. An interpolant is computed from the prefix and suffix of the trace for
every location along the error trace. Here, the additional requirement (Req2 ) is
that the resulting sequence of interpolants is inductive, i.e., that for every loca-
tion, the current interpolant conjuncted with the precise representation of the
instruction at the location implies the next interpolant along the trace. For exam-
ple, this reasoning is crucial for the refinement techniques used in Blast [1] and
Impact [12]. In general, however, such a sequence is not inductive. Therefore,
the authors restrict themselves to specific proof systems to ensure this prop-
erty [7] ruling out not only the choice of interpolants of varying strength but
also the possibility of using state-of-the-art solvers. Other authors even require
multiple solver calls to ensure a similar property [6].



Contribution. The main contribution is a theoretical formulation and proof
of the constraints within the lattice of interpolants, such that Req1 and Req2
are satisfied.

In particular, building on [5], this work analyzes a whole family of interpo-
lation procedures from which the lattice is generated. The analysis yields two
interesting results: (1) we prove that every member of the family that produces
interpolants stronger than the ones given by Pudlák’s algorithm [14] complies
with Req1, and (2) we identify a subset, within the family of procedures (by
means of the logical constraints that characterize it), that satisfies Req2. These
results allow for the systematic study of how interpolants strength affects state-
of-the-art model checking techniques, while preserving their soundness.

Moreover, since our results are not limited to the use of an ad-hoc proof
system, any state-of-the-art solver can be chosen to generate proofs (if needed,
post-processed by, e.g., the techniques of [2]) from which the interpolants are
computed. Additionally, proof manipulation procedures, as in [15], can be applied
to alter the size and the strength of interpolants in the various model checking
applications.

2 Preliminaries
2.1 Craig Interpolation
Craig interpolants [4], since the seminal work by McMillan [9], have been ex-
tensively applied in SAT-based model checking and predicate abstraction [11].
Formally, given an unsatisfiable conjunction of formulae A ∧ B, an interpolant
I is a formula that is implied by A (i.e., A→ I), is unsatisfiable in conjunction
with B (i.e., B ∧ I → ⊥) and is defined on the common language of A and B.
The interpolant I can be thought of as an over-approximation of A that still
conflicts with B.

Several state-of-the art approaches exist to generate interpolants in an auto-
mated manner; the most successful techniques derive an interpolant for A ∧ B
(in certain proof systems) from a proof of unsatisfiability of the conjunction.
This approach grants two important benefits: the generation can be achieved
in linear time w.r.t. the proof size, and interpolants themselves only contain
information relevant to determine the unsatisfiability of A ∧ B. In particular,
Pudlák [14] investigates interpolation in the context of resolution systems for
propositional logic, while McMillan [10] addresses both propositional logic and
a quantifier free combination of the theories of uninterpreted functions and lin-
ear arithmetic. All these techniques adopt recursive algorithms, which initially
set partial interpolants for the axioms. Then, following the proof structure, they
deduce a partial interpolant for each conclusion from those of the premises. The
partial interpolant of the overall conclusion is the interpolant for the formula.

2.2 Resolution Proofs
Assuming a finite set of propositional variables, a literal is a variable, either with
positive (p) or negative (p) polarity. A clause C is a finite disjunction of literals;



a formula ϕ in conjunctive normal form (CNF) is a finite conjunction of clauses.
A resolution proof of unsatisfiability (or refutation) of a formula φ in CNF is a
tree such that the leaves are the clauses of φ, the root is the empty clause ⊥ and
the inner nodes are clauses generated by means of the resolution rule:

C+ ∨ p C− ∨ p
C+ ∨ C−

where C+ ∨ p and C− ∨ p are the antecedents, C+ ∨ C− the resolvent and p is
the pivot of the resolution step.

2.3 Strength of Interpolants

D’Silva et al. [5] generalize the algorithms by Pudlák [14] and McMillan [10]
(as well as the approach dual to McMillan’s, which we will call McMillan′) for
propositional resolution systems by introducing the notion of labeled interpo-
lation system, focusing on the concept of interpolant strength (a formula φ is
stronger than χ whenever φ → χ). They present an analysis and a comparison
of the systems corresponding to the three algorithms, together with a method
to combine labeled systems in order to obtain weaker or stronger interpolants
from a given proof of unsatisfiability. Throughout the paper we will adopt the
notation of [5], adapted as necessary.

Given a refutation of a formula A∧B, a variable p can appear as literal only
in A, only in B or in both conjuncts; p is respectively said to have class A, B or
AB. The authors define a labeling L as a mapping that assigns a color among
{a, b, ab} independently to each variable in each clause (since a variable cannot
have two occurrences in a clause, this is equivalent to coloring literals). The set
of possible labelings is restricted by ensuring that class A variables receive color
a and class B variables receive color b; freedom is left for AB variables to be
colored either a, b or ab.

In [5], a labeled interpolation system is defined as a procedure Itp (shown in
Table 1) that, given A, B, a refutation R of A ∧ B and a labeling L, outputs a
partial interpolant ItpL(A,B,R,C) for any clause C in R; this depends on the
clause being in A or B (if leaf) and on the color of the pivot associated with
the resolution step (if inner node). ItpL(A,B,R) represents the interpolant for
A ∧ B, that is ItpL(A,B,R) , ItpL(A,B,R,⊥)3. We will omit the parameters
whenever clear from the context.

In Table 1, C � α denotes the restriction of a clause C to the literals of
color α. p : α indicates that variable p has color α. By C[I] we represent that
clause C has a partial interpolant I. I+, I− and I are the partial interpolants
respectively associated with the two antecedents and the resolvent of a resolution
step: I+ , ItpL(C+ ∨ p), I− , ItpL(C− ∨ p), I , ItpL(C+ ∨ C−).

An operator t allows to determine the color of a pivot p, taking into ac-
count that p might have different colors α and β in the two antecedents: t is
idempotent, symmetric and defined by a t b , ab, a t ab , ab, b t ab , ab.
3 As customary, we use , to characterize a definition, while ≡ a correspondence.



Table 1: Labeled interpolation system ItpL

Leaf: C [I]

I =
{
C� b if C ∈ A
¬(C� a) if C ∈ B

Inner node: C+ ∨ p : α [I+] C− ∨ p : β [I−]
C+ ∨ C− [I]

I =

{
I+ ∨ I− if α t β = a
I+ ∧ I− if α t β = b
(I+ ∨ p) ∧ (I− ∨ p) if α t β = ab

Table 2: Pudlák’s interpolation system ItpP

Leaf: C [I]

I =
{
⊥ if C ∈ A
> if C ∈ B

Inner node: C+ ∨ p : α [I+] C− ∨ p : α [I−]
C+ ∨ C− [I]

I =

{
I+ ∨ I− if α = a
I+ ∧ I− if α = b
(I+ ∨ p) ∧ (I− ∨ p) if α = ab

ItpM′

ItpM

ItpP

� �

� �

ItpL′
ItpL

ItpL⇓L′

ItpL⇑L′

Figure 1: Lattice of labeled interpolation systems

The systems corresponding to McMillan, Pudlák and McMillan′’s interpola-
tion algorithms will be referred to as ItpM , ItpP , ItpM ′ . ItpL subsumes ItpM ,
ItpP and ItpM ′ , obtained as special cases by coloring all the occurrences of AB
variables with b, ab and a, respectively (compare, for example, Tables 1 and 2).

A total order � is defined over the colors as b � ab � a, and extended to
a partial order over labeled systems: ItpL � ItpL′ if, for every clause C and
variable p in C, L(p, C) � L′(p, C). This allows the authors to directly compare
the logical strength of the interpolants produced by two systems. In fact, for any
refutation R of a formula A ∧B and labelings L,L′ such that L � L′, we have:
ItpL(A,B,R)→ ItpL′(A,B,R) and we say that ItpL is stronger than ItpL′ .

Two interpolation systems ItpL and ItpL′ can generate new systems ItpL⇑L′
and ItpL⇓L′ by combining the labelings L and L′ in accordance with �: (L ⇑
L′)(p, C) , max�{L(p, C), L′(p, C)} and (L ⇓ L′)(p, C) , min�{L(p, C), L′(p, C)}.
The authors remark that the collection of labeled systems over a refutation, to-
gether with the order � and the operators ⇑,⇓, represent a complete lattice,



where ItpM is the greatest element and ItpM ′ is the least, with ItpP being in
between (see Fig. 1).

3 Simultaneous Abstraction with Interpolation

This section analyzes simultaneous abstraction of the conjuncts of an unsatis-
fiable formula by means of multiple interpolants. The requirement (Req1) is to
guarantee that the formula obtained by replacing the conjuncts with the re-
spective interpolants remains unsatisfiable4. We formally describe the problem,
proving that the requirement is satisfied if the interpolants are generated using
Pudlák’s interpolation system, and later generalize the result to any interpola-
tion system which is stronger than Pudlák’s. We conclude by illustrating the
applications to model checking.

3.1 Problem Description

As input, we assume an unsatisfiable formula φ in CNF, such that φ , φ1∧. . .∧φn
and each φi (a partition) is a conjunction of clauses. Given a refutation R of φ
and a sequence of labeled interpolation systems ItpL1 , . . . , ItpLn

, we compute a
sequence of interpolants I1, . . . , In from R. Viewing φ as an unsatisfiable con-
junction of the form A ∧ B, each Ii is obtained by setting φi to A and all the
other φj to B (Ii , ItpLi

(φi, φ1 ∧ . . . ∧ φi−1 ∧ φi+1 ∧ . . . ∧ φn)). These n ways
of splitting the formula φ into A and B will be referred to as configurations. We
prove that I1 ∧ . . . ∧ In → ⊥ (requirement Req1), if for each i: ItpLi ≡ ItpP

5,
and then generalize to any sequence of interpolation systems stronger than ItpP .

3.2 Proof for Pudlák’s System

Pudlák’s system is symmetric, i.e., ItpP (φ1, φ2) = ¬ItpP (φ2, φ1). Thus for n = 2,
I1 = ¬I2; it follows that I1∧I2 → ⊥. We will prove that Req1 holds for n = 3 and
can be extended to an arbitrary number of partitions n. Table 3 shows the class
and the color that a variable p assumes in the three configurations, depending
on presence of p in the three partitions.

Lemma 1. For Pudlák’s interpolation system, I1 ∧ I2 ∧ I3 → ⊥.

Proof (by structural induction). We show that for any clause C in the refutation,
the conjunction of its partial interpolants in the three configurations is unsat-
isfiable. In accordance with Tables 1, 2, we refer to the partial interpolants of
the antecedents as I+ and I− with a subscript i to identify the corresponding
configuration.
4 In [8], a notion of symmetric interpolant overlapping with Req1 is used. We avoid
this name for its easy confusion with symmetry of interpolants, a known property
of the interpolants generated by ItpP .

5 Recall that ItpP is applied to n distinct configurations, so it may be associated with
different labelings for different values of i.



Table 3: Variables coloring in ItpP for n = 3
p in ? Variable class, color for each configuration

A , φ1 , B , φ2 ∧ φ3 A , φ2 , B , φ1 ∧ φ3 A , φ3 , B , φ1 ∧ φ2

φ1 A, a B, b B, b
φ2 B, b A, a B, b
φ3 B, b B, b A, a
φ1, φ2 AB, ab AB, ab B, b
φ1, φ3 AB, ab B, b AB, ab
φ2, φ3 B, b AB, ab AB, ab
φ1, φ2, φ3 AB, ab AB, ab AB, ab

Base case (leaf). A clause C can belong either to φ1, φ2 or φ3. In each case the
clause belongs to A in one configuration and to B in the other two configura-
tions; this implies that the conjunction of its partial interpolants contains one
⊥ element (see Table 2), which makes the conjunction unsatisfiable.
Inductive step (inner node). The inductive hypothesis (i.h.) consists of I+

1 ∧
I+

2 ∧ I
+
3 → ⊥, I

−
1 ∧ I

−
2 ∧ I

−
3 → ⊥. A pivot p can either be local to a partition

or shared by at least two partitions. If local, it has color a in one configuration
and b in all the others; let us assume w.l.o.g. that p is local to φ1. In ItpP the
partial interpolants for the three configurations are I+

1 ∨ I
−
1 , I+

2 ∧ I
−
2 , I+

3 ∧ I
−
3 :

(I+
1 ∨ I

−
1 ) ∧ I+

2 ∧ I
−
2 ∧ I

+
3 ∧ I

−
3 ↔

(I+
1 ∧ I

+
2 ∧ I

−
2 ∧ I

+
3 ∧ I

−
3 ) ∨ (I−1 ∧ I

+
2 ∧ I

−
2 ∧ I

+
3 ∧ I

−
3 )→i.h. ⊥

If shared, p has color b in (at most) one configuration and ab in the other ones.
Let us assume w.l.o.g. that p is shared between φ2 and φ3. The three partial
interpolants are I+

1 ∧ I
−
1 , (I+

2 ∨ p) ∧ (I−2 ∨ p), (I+
3 ∨ p) ∧ (I−3 ∨ p):

I+
1 ∧ I

−
1 ∧ (I+

2 ∨ p) ∧ (I−2 ∨ p) ∧ (I+
3 ∨ p) ∧ (I−3 ∨ p)→∨introduction

(I+
1 ∨ p) ∧ (I−1 ∨ p) ∧ (I+

2 ∨ p) ∧ (I−2 ∨ p) ∧ (I+
3 ∨ p) ∧ (I−3 ∨ p)↔

(p ∨ (I+
1 ∧ I

+
2 ∧ I

+
3 )) ∧ (p ∨ (I−1 ∧ I

−
2 ∧ I

−
3 ))→resolution

(I+
1 ∧ I

+
2 ∧ I

+
3 ) ∨ (I−1 ∧ I

−
2 ∧ I

−
3 )→i.h. ⊥

ut

Lemma 1 can be extended to an arbitrary number of partitions:
Theorem 1. For Pudlák’s interpolation system, I1 ∧ . . . ∧ In → ⊥.

Proof. Proof by structural induction as in Lemma 1.
Base case (leaf). Exactly as in the proof of Lemma 1, with n partitions instead
of 3.
Inductive step (inner node). If the pivot p is local to a partition, the same
argumentation of the proof of Lemma 1 holds. If p is shared, it might assume
colors b (possibly in several configurations) or ab. Multiple applications of the
∨introduction rule and one resolution step yield the result. ut



ItpM′

ItpM

ItpP

ItpLi

Figure 2: The interpolati-
on systems stronger than
ItpP (colored area)

Figure 3: Update check of a program with func-
tions f2, f4 changed to f2’, f4’

3.3 Proof Generalization

Now we generalize Theorem 1 to a family of sequences of interpolation systems.

Theorem 2. For any sequence of interpolation systems ItpL1 , . . . , ItpLn , s.t.
every ItpLi

is stronger than ItpP , I1 ∧ . . . ∧ In → ⊥. (see Figure 2).

Proof. Let Ĩi be ItpP (φi, φ1 ∧ . . .∧ φi−1 ∧ φi+1 ∧ . . .∧ φn); we have that Ii → Ĩi
(recall the partial order on systems defined in §2.3). This implies I1 ∧ . . .∧ In →
Ĩ1 ∧ . . . ∧ Ĩn, which in turn implies ⊥. ut

The result does not necessary hold for systems weaker than ItpP . For exam-
ple, let us consider ItpM ′ . A simple counterexample shows that I1∧ . . .∧In → ⊥
does not hold even for a trivial formula with only two partitions; let φ1 ,
(p ∨ q) ∧ r, φ2 , (p ∨ r) ∧ q:

Configuration A , φ1 , B , φ2: Configuration A , φ2 , B , φ1:

p ∨ q [⊥] p ∨ r [p ∧ r]
q ∨ r [p ∧ r] r [⊥]

q [p ∧ r] q [q]
⊥ [(p ∧ r) ∨ q]

p ∨ q [p ∧ q] p ∨ r [⊥]
q ∨ r [p ∧ q] r [r]

q [(p ∧ q) ∨ r] q [⊥]
⊥ [(p ∧ q) ∨ r]

Clearly, the interpolants (p∧r)∨q and (p∧q)∨r are not mutually unsatisfiable:
a partial model is q, r.

3.4 Application to Model Checking

We provide two examples of model checking algorithms, where the above setting
occurs. In [8], the authors present an algorithm for iterative refinement of an
abstraction of a transition relation. Initially, a coarse abstraction of the transition
relation T̂0 ≡ true is used. The abstraction T̂i is used to check reachability of



error states represented by a predicate ψ from initial states represented by a
predicate U . If error states are unreachable using the abstract transition relation,
the system is safe. Otherwise, we have a trace from an initial state to an error
state in T̂i of length n, for some n. Then, reachability of the error states in n
steps is checked using the precise transition relation T . For this purpose, a precise
bounded model checking formula is constructed and checked for satisfiability6:

U 〈0〉 ∧ T 〈0〉 ∧ T 〈1〉 ∧ . . . ∧ T 〈n−1〉 ∧ ψ〈n〉

If satisfiable, a real error is found and the error trace is extracted from the sat-
isfying assignment. If unsatisfiable, the corresponding interpolants are extracted
from the refutation and used to strengthen the abstraction:

T̂i+1 , T̂i ∧ I〈0〉1 ∧ I〈−1〉
2 ∧ . . . ∧ I〈−n+1〉

n

The fact that T̂i+1 → I
〈−j+1〉
j , for 1 ≤ j ≤ n, and the requirement Req1 yield:

U 〈0〉 ∧ T̂ 〈0〉i+1 ∧ T̂
〈1〉
i+1 ∧ . . . ∧ T̂

〈n−1〉
i+1 ∧ ψ〈n〉 → ⊥

So the new transition relation T̂i+1 does not contain any error trace of length n
and it is a tighter abstraction than T̂i. For this reason, the algorithm terminates
for finite state systems if Req1 holds. Otherwise, termination is not guaranteed.

Another example concerns software update checking. Figure 3 depicts a sit-
uation where a program is being updated. Under a suitable encoding (e.g., as
in [16]), safety of the program (w.r.t. assertion violation) is equivalent to unsatis-
fiability of a formula of the form φmain∧φf1∧φf2∧φf3∧φf4, where each conjunct
represents one of the functions main, f1, f2, f3, f4. If the original program is
safe, the formula is unsatisfiable and we can generate interpolants Imain, If1,
If2, If3, If4. The requirement Req1 yields Imain ∧ If1 ∧ If2 ∧ If3 ∧ If4 → ⊥ and
thus also φmain∧φf1∧ If2∧φf3∧ If4 → ⊥. Now, to prove safety of the updated
program, it suffices to show that φf2′ → If2 and φf4′ → If4. In other words,
that the abstractions If2 and If4 of functions f2 and f4 are still valid abstrac-
tions for the changed functions f2’ and f4’. Note that this is a local and thus
computationally cheap check. Without the requirement Req1, the whole formula
for the entire updated program would have to be constructed and checked again,
which could require many more computational resources.

Theorem 2 offers the choice of interpolation systems generating interpolants
of different strength satisfying Req1. In this second example, the benefit of a
stronger interpolant is a tighter abstraction, i.e., the interpolant more closely
reflects the actual behavior of the corresponding function. On the other hand,
a weaker interpolant is more permissive. So it is more likely to remain a valid
abstraction, when the corresponding function gets updated.
6 In accordance with [8], we expect the transition relation to be a relation over state
variables and their primed versions for the next state values and we use superscript
〈i〉 to indicate addition of i primes (or removal if i is negative).



4 Inductive Sequence of Interpolants

This section analyzes the generation of a sequence of interpolants from the con-
juncts of an unsatisfiable formula; the requirement (Req2) is to guarantee that
the sequence is inductive [7]. We formally describe the problem, proving that the
requirement is satisfied if the interpolants are produced using Pudlák’s interpo-
lation system, and later generalize the result to a particular family of systems
in the lattice. We conclude by illustrating the applications to model checking.

4.1 Problem Description

As input, we assume an unsatisfiable formula φ in CNF, such that φ , φ1 ∧
. . . ∧ φn and each φi is a conjunction of clauses. Given a refutation R of φ
and a sequence of labeled interpolation systems ItpL0 , . . . , ItpLn

, we compute a
sequence of interpolants I0, I1, . . . , In from R; Ii is obtained by setting φ1∧. . .∧φi
to A and φi+1∧. . .∧φn to B (Ii , ItpLi

(φ1∧. . .∧φi, φi+1∧. . .∧φn)), in particular
I0 ≡ ItpL0(>, φ) ≡ > and In ≡ ItpLn(φ,>) ≡ ⊥. These ways of splitting the
formula φ into A and B will be referred to as configurations.

We prove that I0, I1, . . . , In is an inductive sequence of interpolants: for every
i, Ii ∧ φi+1 → Ii+1 holds (requirement Req2) if, for every i, ItpLi

≡ ItpP (as in
the previous setting, ItpP can be associated with different labelings for different
values of i). Then we generalize to a family of sequences of interpolation systems.

Notice that, for a given i, only two configurations need to be taken into
account, the first associated with Ii (A , φ1 ∧ . . .∧φi, B , φi+1 ∧ . . .∧φn), the
second with Ii+1 (A , φ1 ∧ . . . ∧ φi+1, B , φi+2 ∧ . . . ∧ φn); φi+1 is the only
subformula shared between A and B.

Since the proof is independent of i, to simplify the notation we will represent
φ1∧. . .∧φi as X, φi+1 as S, φi+2∧. . .∧φn as Y (so that the formula is X∧S∧Y ),
Ii as I, Ii+1 as J and Ii ∧ φi+1 → Ii+1 as I ∧ S → J .

4.2 Proof for Pudlák’s System

Theorem 3. For Pudlák’s interpolation system, I ∧ S → J .

Proof. By the above definitions, I ≡ Itp(X,S ∧ Y ) and J ≡ Itp(X ∧ S, Y ) =
¬Itp(Y,X∧S) (by symmetry of Pudlák’s system). Denoting K , Itp(S,X∧Y ),
Lemma 1 states that I ∧K ∧¬J → ⊥. Since S → K, then I ∧S ∧¬J → ⊥, that
is I ∧ S → J . ut

4.3 Proof Generalization

We will now prove that I ∧ S → J holds in all the sequences of interpolation
systems that comply with particular coloring restrictions. As shown in Table 4,
two configurations are to be considered, which share the conjunct S. By C�1,σ
and C �2,σ we denote the restriction of a clause C to the literals of color σ
according to the labeling of configurations 1 and 2, respectively.



Table 4: Variables coloring for Definition 1
p in ? Variable class, color for each configuration

A , X , B , S ∧ Y A , X ∧ S , B , Y
X A, a A, a
S A, a B, b
Y B, b B, b
X, S AB,α ∈ {a, b, ab} A, a
S, Y B, b AB, β ∈ {a, b, ab}
X,Y AB, γ1 ∈ {a, b, ab} AB, γ2 ∈ {a, b, ab}
X,S, Y AB, δ1 ∈ {a, b, ab} AB, δ2 ∈ {a, b, ab}

To simplify the proofs we initially enforce a set of constraints, so that the
color taken by the occurrence of a variable in a clause in the two configurations
is consistent; we will later show that the result still holds if the constraints are
relaxed.

Definition 1 (Coloring constraints). We define a set of coloring constraints
(CC) over Table 4 as follows: α = a, β = b, γ1 = γ2, δ1 = δ2.

Lemma 2. I ∧ S → J , assuming the coloring constraints of Definition 1.

Proof (by structural induction). We prove that, for any clause C in a refutation
of X ∧S ∧Y , fC ∧ I(C)∧S ∧¬J(C)→ ⊥, where fC is an additional constraint
(to be determined), dependent on C, that becomes empty at the end of the proof
(f⊥ ≡ >). For simplicity we drop the parameter C in I, J . I+, I− are defined
as in the previous setting, similarly J+ and J−.
Base case (leaf). Case splitting on C (refer to Table 4):

C ∈ X : I ≡ C�1,b and J ≡ C�2,b
C ∈ S : I ≡ ¬(C�1,a) and J ≡ C�2,b
C ∈ Y : I ≡ ¬(C�1,a) and J ≡ ¬(C�2,a)

We construct fC in order to simultaneously satisfy the following conditions:

C ∈ X : fC ∧ C�1,b ∧S ∧ ¬(C�2,b)→ ⊥
C ∈ S : fC ∧ ¬(C�1,a) ∧ S ∧ ¬(C�2,b)→ ⊥
C ∈ Y : fC ∧ ¬(C�1,a) ∧ S ∧ C�2,a→ ⊥

The CC constraints yield C�1,b ∧¬(C�2,b)→ ⊥ and ¬(C�1,a)∧C�2,a→ ⊥; as for
¬(C�1,a)∧¬(C�2,b), it “counteracts” the literals of S with variables in X,S and
S, Y and X,S, Y (colored a or b). The literals left are those whose variables are
in S (denoted by C�S) and those in X,S, Y colored ab (denoted by C�XSYab ); it
is thus sufficient to set fC , ¬(C�S ∨C�XSYab ).
Inductive step (inner node). The inductive hypothesis (i.h.) consists of f(C+∨p)∧
I+ ∧ S ∧ ¬J+ → ⊥, f(C−∨p) ∧ I− ∧ S ∧ ¬J− → ⊥.



Now fC ≡ f(C+∨C−), that is ¬((C+ ∨ C−)�S) ∧ ¬((C+ ∨ C−)�XSYab ).
We have:

fC → fC+ ∧ fC− (1)

since ¬((C+ ∨ C−)�S) ↔ ¬(C+�S) ∧ ¬(C−�S) and (C+�XSYab ) ∨ (C−�XSYab ) →
((C+ ∨ C−)�XSYab ) 7.
Case splitting based on the presence of the pivot p in X/S/Y (see Table 4):

Case 1 (p in X).

fC ∧ S ∧ I ∧ ¬J ↔
fC ∧ S ∧ (I+ ∨ I−) ∧ ¬(J+ ∨ J−)↔
fC ∧ S ∧ (I+ ∨ I−) ∧ ¬J+ ∧ ¬J− ↔

(fC ∧ S ∧ I+ ∧ ¬J+ ∧ ¬J−) ∨ (fC ∧ S ∧ I− ∧ ¬J− ∧ ¬J+)→
(fC ∧ S ∧ I+ ∧ ¬J+) ∨ (fC ∧ S ∧ I− ∧ ¬J−)→(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+) ∨ (fC− ∧ S ∧ I− ∧ ¬J−)→(2)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−)→i.h. ⊥

where (2) holds since p is restricted.

Case 2 (p in S).

fC ∧ S ∧ I ∧ ¬J ↔
fC ∧ S ∧ (I+ ∧ I−) ∧ ¬(J+ ∨ J−)↔
fC ∧ S ∧ I+ ∧ I− ∧ ¬J+ ∧ ¬J− ↔

(fC ∧ S ∧ I+ ∧ ¬J+) ∧ (fC ∧ S ∧ I− ∧ ¬J−)→(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+) ∧ (fC− ∧ S ∧ I− ∧ ¬J−)→(2)

(fC+ ∧ S ∧ I+ ∧ ¬J+ ∧ p) ∨ (fC− ∧ S ∧ I− ∧ ¬J− ∧ p)↔(3)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−)→i.h. ⊥

where (2) holds since φ ∧ χ→ (φ ∧ p) ∨ (χ ∧ p), (3) since fCi ∧ p↔ f(Ci∨p).

Case 3 (p in Y ). Dual to Case 1.

Case 4 (p in X,S). As for Case 1.

Case 5 (p in S, Y ). As for Case 3.

7 Notice that the inverse of the last implication does not hold; in fact, a variable in
X,S, Y could have, e.g., color ab in C+ ∨ C− because it has color a in C+ and
color b in C− (recall the definition of t in §2.3), which means that it appears in
(C+ ∨ C−)�XSY

ab but gets restricted both in C+�XSY
ab and in C−�XSY

ab .



Case 6 (p in X,Y ). As for Case 1 or Case 3 if color is either a or b. If ab:

fC ∧ S ∧ I ∧ ¬J ↔
fC ∧ S ∧ ((I+ ∨ p) ∧ (I− ∨ p)) ∧ ¬((J+ ∨ p) ∧ (J− ∨ p))↔
fC ∧ S ∧ (I+ ∨ p) ∧ (I− ∨ p) ∧ (¬(J+ ∨ p) ∨ ¬(J− ∨ p))→

(fC ∧ S ∧ (I+ ∨ p) ∧ ¬(J+ ∨ p)) ∨ (fC ∧ S ∧ (I− ∨ p) ∧ ¬(J− ∨ p))↔
(fC ∧ S ∧ (I+ ∨ p) ∧ ¬J+ ∧ p) ∨ (fC ∧ S ∧ (I− ∨ p) ∧ ¬J− ∧ p)→

(fC ∧ S ∧ I+ ∧ ¬J+) ∨ (fC ∧ S ∧ I− ∧ ¬J−)→(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+) ∨ (fC− ∧ S ∧ I− ∧ ¬J−)→(2)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−)→i.h. ⊥

where (2) holds since p is restricted.
Case 7 (p in X,S, Y ). As for Case 1 or Case 3 if color is either a or b, since p
is restricted. As for Case 6 if color is ab, but last three lines are replaced by:

(fC ∧ S ∧ (I+ ∨ p) ∧ ¬J+ ∧ p ∧ p) ∨ (fC ∧ S ∧ (I− ∨ p) ∧ ¬J− ∧ p ∧ p)→
(fC ∧ S ∧ I+ ∧ ¬J+ ∧ p) ∨ (fC ∧ S ∧ I− ∧ ¬J− ∧ p)→(1)

(fC+ ∧ S ∧ I+ ∧ ¬J+ ∧ p) ∨ (fC− ∧ S ∧ I− ∧ ¬J− ∧ p)→(2)

(f(C+∨p) ∧ S ∧ I+ ∧ ¬J+) ∨ (f(C−∨p) ∧ S ∧ I− ∧ ¬J−)→i.h. ⊥

where (2) holds since fCi
∧ p↔ f(Ci∨p). ut

Lemma 3. The CC constraints of Definition 1 can be relaxed as follows: α � a,
b � β, γ1 � γ2, δ1 � δ2.

Proof. Let I, J be interpolants generated using interpolation systems according
to the constraints CC in Def. 1. Let us use primed variables to represent the
relaxed constraints of Lemma 3 as α′ � α = a (i.e., any α′), b = β � β′ (i.e.,
any β′), γ′1 � γ1 = γ2 � γ′2, δ′1 � δ1 = δ2 � δ′2 and let I ′, J ′ represent the
corresponding interpolants. Recalling the order b � ab � a over colors, which
induces a partial order over interpolation systems (see §2.3), we get I ′ → I and
J → J ′. Thus, the relaxed constraints yield: I ′∧S∧¬J ′ → I∧S∧¬J → ⊥. ut

The above considerations lead to the following result:

Theorem 4. For any sequence of interpolation systems ItpL0 , . . . , ItpLn
, which

respects the relaxed constraints of Lemma 3, I0, I1, . . . , In is an inductive se-
quence of interpolants, i.e., Ii ∧ φi+1 → Ii+1, for 0 ≤ i < n.

4.4 Application to Model Checking

The above setting occurs, for example, during counterexample-guided abstrac-
tion refinement. Given a spurious error trace, the goal is to annotate nodes of the
abstract reachability tree with an inductive sequence of formulae that together



ItpM′

ItpM

ItpL1

ItpL2

ItpL3

ItpLn

Figure 4: Weakening inter-
polation systems

I0 = > I1 I2 In−1 In = ⊥
. . . errorinit φ1 φ2 φn

. . .
φi

Ii−1 Ii

X S Y

Figure 5: Spurious error trace annotated by inter-
polants

rule out the trace. The trace is represented as a formula φ1∧. . .∧φn, which is con-
structed from the SSA form of the trace and which is unsatisfiable if and only if
the error trace is infeasible. If so, a sequence of interpolants Ii is created by means
of a sequence of interpolation systems as Ii , ItpLi

(φ1∧ . . .∧φi, φi+1∧ . . .∧φn),
I0 ≡ >, and In ≡ ⊥, as depicted in Fig. 5 (along with the partitioning of the
path formula into X, S, and Y for the purposes of Lemma 2). In addition, Req2
requires the sequence of interpolants to be inductive, i.e., Ii ∧ φi+1 → Ii+1. In
which case, the error trace is removed from the refined abstraction. However,
such a sequence of interpolants is not inductive in general and thus the same
error trace may remain also in the refined abstraction, should Req2 be violated.
As already mentioned, refinement phases of tools like Blast [1] and Impact [12]
rely on this fact.

Theorem 4 ensures that Req2 is satisfied by interpolants derived using in-
terpolation systems weakening towards the end of the error trace (depicted in
Fig. 4). It is thus possible to choose an interpolation system depending on the
instruction at the current position along the error trace (i.e., the current S in
the language of Lemma 2). As an example, some instructions in the error trace
may trigger generation of weaker interpolants (i.e., a more coarse abstraction).
In practice, this would affect the speed of convergence of the refinement loop.

5 Related Work

In model checking, interpolation is a common means for abstraction. Interpo-
lation is used as an abstract post-image operator in hardware bounded model
checking [9]; the interpolant is generated from the proof of unsatisfiability of a
bounded model checking formula so that it represents a superset of states reach-
able from the initial states. Faster convergence of the model checking algorithm
applying this method of abstraction is observed during experiments. Interpola-



tion is also used in concolic execution to propagate reasons of trace infeasibility
backward towards the start of the program [13]. This allows discarding infea-
sible traces as early as possible and thus saving the effort of evaluating them.
In software bounded model checking, function summaries can be created using
interpolation [16]; these are employed during analysis of different properties to
represent a function body without the need to process its whole call tree. Inter-
polation also proves to be very useful in refining predicate abstraction based on
spurious counterexamples [7]. Here, interpolation is used to derive new predicates
that rule out the spurious error traces. The listed works describe applications of
interpolation in model checking; see [11] for a comprehensive list. Typically, the
authors limit themselves to either Pudlák’s or McMillan’s algorithms without
considering further variation in the strength of interpolants. We believe that all
these techniques would benefit from choosing among interpolants of appropriate
strengths. The results of this paper provide safe boundaries for such a choice.

Other related work concerns the actual generation of interpolants. Pudlák [14]
shows that interpolants can be derived in linear time with respect to the given
refutation. McMillan [10] proposes a different algorithm that produces logically
stronger interpolants and addresses both propositional logic and a quantifier free
combination of the theories of uninterpreted functions and linear arithmetic.
In [2], local proof transformations are presented that (by reordering proofs and
removing so called ab-mixed predicates) can change a refutation produced by
a standard SMT-solver so that it becomes suitable for interpolant generation.
Authors of [5] provide a generalized algorithm for interpolation that subsumes
both Pudlák’s and McMillan’s algorithms. They also show that a complete lattice
of interpolants ordered by the implication relation can be systematically derived
from a given refutation. However, they do not study the limits with regard to
the actual application of interpolants of differing strength in model checking.
Building upon [5], our work provides this missing connection and defines and
proves these boundaries in the particular model checking settings.

In this paper, we consider two classes of model checking approaches that put
additional requirements on the resulting interpolants. These requirements were
previously formulated in the literature (Req1 in [8] and Req2 in [7]). Until now,
however, the conditions under which they hold have not been thoroughly studied,
in particular in the context of different interpolation systems of [5]. Novelty of
our work lies in the fact that we provide constraints on the complete lattice of
interpolants that, when obeyed, ensure satisfaction of the requirements.

6 Conclusion

Interpolants are not unique and may vary in strength. The effects of using in-
terpolants of different strength in model checking can be substantial and are
yet to be properly studied. However, common applications of interpolation in
model checking put additional requirements that (as we show) are not satisfied
in general, specifically when interpolants of various strengths are generated by
different interpolation systems. In this paper, for two classes of model checking



techniques employing interpolation, we showed the safe boundaries for varying
the strength of interpolants, proving the limitations under which the require-
ments are satisfied. Our theoretical result enables study of the effects of the
interpolants strength on the model checking algorithms. Since our result is not
limited to an ad-hoc proof system, any state-of-the-art solver can be used to
generate proofs used for interpolation. Strength and size of interpolants can be
also affected by proof manipulation procedures as shown in [15]. We intend to
address the above questions in our future work.

References

1. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The Software Model Checker
Blast: Applications to Software Engineering. Int. J. STTT 9, 505–525 (2007)

2. Bruttomesso, R., Rollini, S.F., Sharygina, N., Tsitovich, A.: Flexible Interpolation
with Local Proof Transformations. In: ICCAD ’10. pp. 770–777. IEEE (2010)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: CAV ’00. LNCS, vol. 1855, pp. 154–169. Springer
(2000)

4. Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model The-
ory and Proof Theory. J. of Symbolic Logic pp. 269–285 (1957)

5. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength.
In: VMCAI ’10. LNCS, vol. 5944, pp. 129–145. Springer (2010)

6. Heizmann, M., Hoenicke, J., Podelski, A.: Nested Interpolants. In: POPL ’10. pp.
471–482. ACM (2010)

7. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: POPL ’04. pp. 232–244. ACM (2004)

8. Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation.
Logical Methods in Computer Science 3(4) (2007)

9. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: CAV ’03.
LNCS, vol. 2725, pp. 1–13. Springer (2003)

10. McMillan, K.L.: An Interpolating Theorem Prover. In: TACAS ’04. LNCS, vol.
2988, pp. 16–30. Springer (2004)

11. McMillan, K.L.: Applications of Craig Interpolation in Model Checking. In: TACAS
’05. LNCS, vol. 3440, pp. 1–12 (2005)

12. McMillan, K.L.: Lazy Abstraction with Interpolants. In: CAV ’06. LNCS, vol. 4144,
pp. 123–136. Springer (2006)

13. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: CAV’
10. LNCS, vol. 6174, pp. 104–118. Springer (2010)

14. Pudlák, P.: Lower Bounds for Resolution and Cutting Plane Proofs and Monotone
Computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

15. Rollini, S.F., Bruttomesso, R., Sharygina, N.: An Efficient and Flexible Approach
to Resolution Proof Reduction. In: HVC ’10. LNCS, vol. 6504, pp. 182–196.
Springer-Verlag (2010)

16. Sery, O., Fedyukovich, G., Sharygina, N.: Interpolation-based Function Summaries
in Bounded Model Checking. In: HVC ’11. LNCS (2011), to appear


