
An Efficient and Flexible Approach to
Resolution Proof Reduction

Simone Fulvio Rollini, Roberto Bruttomesso, and Natasha Sharygina

University of Lugano, Formal Verification Group, Lugano, Switzerland
{simone.fulvio.rollini,roberto.bruttomesso,natasha.sharygina}@usi.ch

Abstract. A resoution proof is a certificate of the unsatisfiability of a
Boolean formula. Resolution proofs, as generated by modern SAT solvers,
find application in many verification techniques. For efficiency smaller
proofs are preferable over larger ones. This paper presents a new ap-
proach to proof reduction, situated among the purely post-processing
methods. The main idea is to reduce the proof size by eliminating redun-
dancies of occurrences of pivots along the proof paths. This is achieved
by matching and rewriting local contexts into simpler ones. In our ap-
proach, rewriting can be easily customized in the way local contexts are
matched, in the amount of transformations to be performed, or in the
different application of the rewriting rules. We provide an extensive ex-
perimental evaluation of our technique on a set of benchmarks, which
shows considerable reduction in the proofs size.

1 Introduction

A propositional proof of unsatisfiability is a certificate of the unsatisfiability of a
Boolean formula. It is straightforward to instruct a state-of-the-art solver based
on DPLL to return proofs: a resolution proof, in particular, can be derived by
logging the resolution steps during conflict analysis [17].

Resolution proofs, as generated by modern SAT solvers, find application in
many verification techniques. For instance, Amla and McMillan’s [3] method
for automatic abstraction uses proofs of unsatisfiability derived from SAT-based
bounded model checking as a guide for choosing an abstraction for unbounded
model checking. Proofs can be used as justifications of specification of inconsis-
tency in various industrial applications (e.g. automotive industry [15]). Another
noteworthy application of proofs is in the context of interpolation-based model
checking [9, 11, 12]. Moreover, a proof can be used to extract an unsatisfiable
core, an inconsistent subset of clauses.

For most applications, large and redundant proofs negatively affects effi-
ciency. Unfortunately the size of a propositional resolution proof may grow
exponentially w.r.t. the input. Even when the proofs have a manageable size,
further speed-ups may be achieved with proof-compression techniques. Several
reduction techniques are known in literature. We briefly recall them as follows.
Amjad [1] suggests a heuristic reordering of the resolution steps, based on literals
linking and subsumption checking. Sinz [14] explicitly assumes a DPLL context

and focuses on identifying and merging shared substructures in the derivation of
learned clauses obtained from conflict graphs. Amjad [2] develops this approach
by introducing memoization of common subproofs, in a string data compres-
sion perspective; Cotton [6] also adopts a memoization technique, as well as
a rewriting procedure based on variable valuation. Bar-Ilan et al. [4] present
a post-processing reduction technique based on discovering resolutions on the
same pivot along paths in the proof and on maximizing the reuse of derived unit
clauses in the proof. In the context of proofs and interpolants, D’Silva et al. [7]
introduce a transformation framework to reorder a proof w.r.t. a partial order
among pivots, with reduction being a side effect for some benchmarks.

This paper presents another approach for proof reduction. It is situated
among the purely proof post-processing techniques, and it is independent from
the way the refutation is produced: the algorithm we propose can be applied to
an arbitrary propositional resolution proof of unsatisfiability.

Resolution proofs can be thought of as trees, where the leaves are the original
clauses in the problem and the root is the empty clause. The main idea behind
our approach is to reduce the proof size by eliminating redundancies in the proof.
This idea has been already exploited by other authors, for instance in [4], where
the proof tree is analyzed to detect multiple resolution steps on the same variable
along a path from the root to the leaves. (more details are given in §2).

In particular our approach aims at detecting redundancies by matching and
rewriting local contexts in the proof into simpler ones. The rewriting process can
be easily customized in the way local contexts are matched, in the amount of
transformations to be performed, or in the different application of the rewriting
rules. It results in a considerable reduction of the proof size as confirmed by our
experimental evaluation of the new technique.

Our method inherits the idea of matching contexts in a proof from [5], where
the application of the rules is aimed at reordering pivots for deriving interpolants.
We observed that a side-effect of some pivot reordering steps may result in a re-
duction of the proof tree. This paper generalizes this effect to achieve systematic
proof compression.

We compare our approach with that of [4], by pointing out similarities and
discrepancies, strengths and weaknesses of both. We illustrate a simple way of
combining them in a unified and effective strategy. We provide an extensive
experimental evaluation on a set of SMT benchmarks, for which the presented
techniques are very effective.

The paper is organized as follows. §2 recalls some notions about resolution
and introduces the notation; it then goes over the set of transformation rules
presented in [5] and the RecyclePivots algorithm of [4]. §3 describes the new
proof transformation algorithm. §4 proposes a combined strategy of our approach
with that of [4]. §5 illustrates the results of a number of experiments on a set of
SMT benchmarks, showing the individual performances of the two algorithms
and the benefits that can be gained by merging them into a combined procedure.
§6 draws the conclusions.

2 Preliminaries and Previous Work

In the following we shall use o, p, q, r (possibly with subscripts) to denote Boolean
variables, s, t to denote literals, α, β, . . . to denote clauses, and C,D, . . . to denote
sub-clauses. The empty clause is denoted by ⊥. We will write clauses as lists of
literals and sub-clauses, omitting the “∨” symbol, as for instance pqC. We will
use the form α ⊆ β to indicate that α subsumes β, i.e., that the set of literals α
is a subset (not necessarily proper) of the set of literals β. Also we will assume
that clauses do not contain duplicated literals or both the occurrences of a literal
and its negation. If s is a literal we use var(s) to denote the variable associated
with it.

Resolution is the following proof rule:

pC pD
p

CD

Clauses pC and pD are called antecedents, CD is the resolvent, and p is the
pivot variable. Throughout the paper we shall use the notion of resolution proof.

Definition 1 (Resolution Proof). A resolution proof of a clause λ from a
set of clauses S is a tree such that (i) its leaves are clauses in S, (ii) the root
is λ, (iii) intermediate clauses are derived by means of an application of the
resolution rule.

From now on we shall focus on the notion of propositional resolution proof,
and we will just use the term “proof” for brevity. We say that a proof is a
refutation or a proof of unsatisfiability if λ ≡ ⊥. In real-world applications proofs
are rarely stored as trees. For instance proofs generated by DPLL SAT-Solvers
are normally stored as DAGs (Directed Acyclic Graph), in order to minimize the
memory consumption. We therefore introduce the following alternative notion
of resolution proof, which is equivalent to the previous one but more suitable for
describing the graph-based transformation algorithms presented in this paper.

Definition 2 (Graph-based Resolution Proof). A resolution proof of a
clause λ from a set of clauses S is a Directed Acyclic Graph G(V,E) such that:

(i) Each node n ∈ V is associated with a clause ncl.
(ii) Each node has either no antecedents (leaf node) or it has exactly two an-

tecedents from which it is derived by means of an application of the reso-
lution rule (derived node).

(iii) For each pair of nodes m and n there is a directed edge m → n ∈ E if
and only if mcl is an antecedent of ncl (by extension, we will call m an
antecedent of n and n a resolvent of m).

(iv) For each derived node n, we denote with npiv the pivot of the resolution
step of which ncl is the resolvent, while nl and nr are the left and right
antecedents (we assume they respectively contain the positive and negative
occurrence of the pivot).

Let n be a node in a proof P . The portion of P that is backward-reachable
from n is clearly a proof of ncl. A proof is said to be regular [16] if each variable
is used as a pivot at most once along each path. A proof is tree-like if in the
corresponding DAG every node (apart from root and leaves) has exactly one
resolvent.

Similarly to [4], we will allow a little flexibility in the notion of proof and
distinguish between a legal and an illegal proof. A legal proof is simply a DAG as
in Definition 2; an illegal proof is a graph which has undergone transformations
in such a way that some nodes (clauses) might not be the resolvents of their
antecedents clauses anymore. In this paper however any illegal proof represents
an intermediate transformation step in the algorithm, and the proof can always
be reconstructed into a legal one, as better explained in the next sections.

2.1 The RecyclePivots Approach

The RecyclePivots algorithm of [4] is based on the observation that, along each
path from a leaf to the root, it is unnecessary to resolve upon a certain pivot
more than once. Such redundancies can be removed, for example by keeping (for
a given variable and a path) only the resolution step closest to the root, while
cutting the others away.

Example 1. Consider the leftmost path of the proof in Figure 1a. Variable p is
used twice as pivot. The topmost resolution step is redundant as it eliminates a
variable (p) which is reintroduced in a subsequent step. A better proof can be
achieved by eliminating the topmost resolution step, and by adjusting the proof
accordingly. The resulting final proof is shown in Figure 1b.

pq po
p

qo {p, q} pq
q

po {p}
qo pq

q
po

p
o

pq pq
q

p

qo pq
q

po
p

o

(a) (b)

Fig. 1. RecyclePivots execution. Bold-faced font highlights the differences in the proofs.
Curly brackets contain the set of removable literals.

As suggested by Example 1, redundancies are caused by the re-introduction
of a previously eliminated variable in a path from a leaf to the root.

Algorithm 1 shows the recursive version of RecyclePivots. It works with a
depth-first visit of the proof graph, from the root to the leaves. It receives as
input a node of the proof (initially ⊥) and a set of removable literals RL (initially
empty). The removable literals are essentially the (partial) collection of pivot
literals encountered during the exploration of a path, from the root to the leaves.
If the pivot variable of the resolution step under consideration is in RL (lines 14

and 17), then the resolution step is redundant and one of the antecedents may
be removed from the proof (lines 15 and 18)1.

Notice that in the case of tree-like proofs the outcome of the process is a
regular proof. For generic DAG-like proofs the algorithm is executed in a limited
form (when multiple resolvents are detected) precisely by resetting RL (line 10);
therefore the result is not necessarily a regular proof.

Algorithm 1: RecyclePivots(n,RL)

Input: A node n, a set of removable literals RL
begin1

if n is visited then2

return;3

else4

Mark n as visited;5

if n is a leaf then6

return;7

else8

if n has more than one resolvent then9

RL← ∅;10

if npiv /∈ RL and npiv /∈ RL then11

RecyclePivots(nl,RL ∪ {npiv});12

RecyclePivots(nr,RL ∪ {npiv});13

else if npiv ∈ RL then14

nl ← null;15

RecyclePivots(nr,RL);16

else if npiv ∈ RL then17

nr ← null;18

RecyclePivots(nl,R);19

end20

2.2 Local Proof Transformation Rules

The reduction approach proposed in this paper is built upon a generic proof
transformation framework presented in [5], that we recall as follows. The frame-
work is based on a set of rewriting rules that transform a subproof into an
equivalent or stronger one. Each rewriting rule is defined to match a particular
context, identified by two consecutive resolution steps (see Figure 2).

A context involves two pivots p and q and five clauses α, β, γ, δ, η. Clearly p
is contained in β and γ (with opposite polarity), and q is contained in δ and α
(with opposite polarity).

1The resulting illegal proof has to be reconstructed to a legal one. It can be done
in linear time [4].

β γ
p

δ α q
η

Fig. 2. A rule context.

Case A1: s /∈ α, t ∈ γ

stC stD
var(s)

tCD tE
var(t)

CDE

⇒
stC tE

sCE

tE stD
var(t)

sDE
var(s)

CDE

Case A2: s 6∈ α, t /∈ γ

stC sD
var(s)

tCD tE
var(t)

CDE

⇒
stC tE

var(t)
sCE sD

var(s)
CDE

Case B1: s ∈ α, t ∈ γ

stC stD
var(s)

tCD stE
var(t)

sCDE

⇒ stC stE
var(t)

sCE

Case B2: s ∈ α, t /∈ γ

stC sD
var(s)

tDC stE
var(t)

sCDE

⇒
stC stE

var(t)
sCE sD

var(s)
CDE

Case B3: s ∈ α, t 6∈ γ

stC sD
var(s)

tCD stE
var(t)

sCDE

⇒ sD

Fig. 3. Local transformation rules.

Figure 3 shows the set of five proof transformation rules introduced in [5]2.
The set is exhaustive w.r.t. all the possible local contexts in a proof, modulo
symmetry and the sign of s and t (notice that they are both literals). In [5] we
used the set of rules to compute interpolants in the context of SMT. In short, in

2The proof transformations associated with the rules A1 and A2 were discussed
first in [10] and later in [8].

Case A1′

stC stD
var(s)

tCD tE
var(t)

CDE

⇐
stC tE

sCE

tE stD
var(t)

sDE
var(s)

CDE

Case B2′: t /∈ γ

stC sD
var(s)

tDC stE
var(t)

sCDE

⇒ stC stE
var(t)

sCE

Fig. 4. Two new reduction rules.

order to apply state-of-the-art solving methods for interpolation, it is necessary
to reorder the pivots in the proof according to some partial order. This reordering
can be achieved with an exhaustive applications of the rules in Figure 3: each
rule either lifts t over s, or it eliminates their alternation, until the proof respects
the given partial order.

The reader may notice that some rules, those with prefix B, have the side-
effect of reducing the complexity of the proof: in all B cases, in fact, the root
of the right-hand side of the rule is stronger than the root of the left-hand
side, even though it is derived from the same set of premises. In this paper we
systematically exploit this reduction effect to the aim of reducing the proof as
much as possible.

Example 2. Recall Figure 1a from Example 1. The context highlighted by the
bold-faced font corresponds to the premise of our rule B2. Proof is again rewrit-
ten as in Figure 1b.

3 Reduction by Proof Manipulation

This section presents a new algorithm for proof reduction, which is based on
the rules recalled in §2.2 and on a couple of new reduction rules. We start
by introducing the new rules and then we present a deterministic application
strategy aimed at proof reduction. Then we compare with the Recycle Pivots
approach of [4] and finally we draw a simple and effective way to combine the
two approaches.

3.1 Two New Reduction Rules

Although the set of contexts for rules in Figure 3 is exhaustive, we noticed that
in the case of B2 another transformation can be performed; a new reduction
rule B2′, associated with the same context of B2, has thus been introduced here

for the sake of completeness. Another reduction rule A1′ is conceived as the
“inverse” of A1 (notice the direction of the arrow).

3.2 The Transformation Algorithm

Recall that in [5] the rewriting rules were employed to perform a local reordering
of the pivots. In particular A1, A2, and B2 were used to swap the position of two
subsequent pivots, while B1 and B3 were employed to eliminate a re-introduction
of a pivot variable.

Here the focus is on reduction: rules B1, B2, B2′ and B3, when applied to
a context, are directly responsible for the reduction of the proof, as their root
η′ is stronger than that of the original context η, i.e. η′ ⊂ η. Notice that after
the application of a B rule the proof might become illegal, as some literals in
η \ η′ might be involved in another resolution step along the path to the root.
We shall explain this situation by means of an example. Consider the following
proof:

pq po
p

qo pq
q

po

qr pq
q

pr
p

or os
o

rs

(1)

The highlighted context can be reduced via an application of B2 as follows:

pq pq
q

p

qr pq
q

pr
p

or os
o

rs

(2)

The proof has become illegal as the literal o is now not introduced by any
clause (o ∈ {p, o} \ {p}). Since we have derived a stronger conclusion ({p} ⊂
{p, o}) o is now redundant and it can be eliminated all the way down to the
root or up to the point it is reintroduced by some other resolution step. In this
example we can safely remove o together with the last resolution step which also
becomes redundant. The resulting legal (and stronger) proof becomes:

pq pq
q

p

qr pq
q

pr
p

r

(3)

At this stage no other B rule could be directly applied to the proof.

Rule A2 does not perform any reduction on its own. However it is still used
in our framework. Its contribution is to produce a “shuffling” effect in the proof,
in order to create more chances for the B rules to be applied. Rule A1 instead
is never used (it may increase the size of the proof). Consider again our running
example. An application of A2 can be executed as follows:

pq pq
q

p

qr pq
q

pr
p

r
qr

pq pq
q

p pq
p

q
q

r

(4)

The application of A2 has now exposed a new redundancy involving the
variable q. The proof can be readily simplified by means of the application of
B2′ as follows:

qr

pq pq
q

p pq
p

q
q

r

qr

pq pq
p

q
q

r

(5)

The rewriting framework defined by our rules leaves to the user the flexibility
of choosing a particular strategy and a termination criterion for their application.
A naive strategy is to eagerly try the application of the B rules until possible,
and then try to shuffle the proof by means of A2, in the hope of disclosing other
redundancies, and apply B rules again. However there is usually a huge number
of contexts where A2 could be applied, and it is computationally expensive to
predict whether one or a chain of applications will eventually lead to the creation
of contexts for a B rule (more details on the heuristics used are given in the next
section).

Therefore there are two obvious termination criteria that could be used:
to stop when a timeout is reached or after a certain number of contexts has
been explored. In our approach we set both limits, and stop whenever the first
has been reached. Our reduction procedure is ReduceAndReconstruct, listed as
Algorithm 2.

Algorithm 2: ReduceAndReconstruct

Input: A proof; timelimit: a timeout; numloops: the number of transformation
loops to perform

Output: A reduced (legal) proof
begin1

for i=1 to numloops do2

ReduceAndReconstructLoop();3

if timeout then4

break;5

end6

end7

The procedure is based on the routine ReduceAndReconstructLoop(), listed
as Algorithm 3.

The algorithm combines proof reduction and reconstruction (due to removal
of literals as explained above). It works as follows. At first it performs a topo-
logical ordering of the graph (line 2), in order to ensure that each node is visited
after its antecedents. Then it analyzes one node at a time, checking if the cor-
responding resolution step is still valid (line 5). If the resolution step is valid,
it updates the resolvent clause, determining the node contexts (if any) and the
associated rules. At most one rule is applied, and the decision is based on lo-
cal heuristic considerations (see next section). If the resolution step is not valid

Algorithm 3: ReduceAndReconstructLoop()

Input: A proof
Output: A legal proof
Data: TS: nodes topological sorting vector
begin1

TS ← topological sorting(proof);2

foreach n ∈ TS do3

if n is not a leaf then4

if npiv ∈ nl
cl and npiv ∈ nr

cl then5

ncl ← Res(nl
cl, n

r
cl);6

Determine left context of n, if any;7

Determine right context of n, if any;8

Heuristically choose one context (if any) and apply the9

corresponding rule;
else if npiv /∈ nl

cl and npiv ∈ nr
cl then10

Substitute n with nl;11

else if npiv ∈ nl
cl and npiv /∈ nr

cl then12

Substitute n with nr;13

else if npiv /∈ nl
cl and npiv /∈ nr

cl then14

Heuristically choose an antecedent nl or nr;15

Substitute n with nl or nr;16

end17

end18

and either antecedent does not contain the pivot (lines 10, 12, 14), the step is
removed, by replacing the resolvent with that antecedent (which, missing the
pivot, subsumes the resolvent itself); at graph level, n is substituted with nl or
nr. Notice that the antecedent not responsible for the substitution might have
lost all its resolvents and thus it does not contribute to the proof anymore; in
that case it is pruned away, together with the portion of the subgraph rooted in
it which has become unreachable.

We have the following result.

Theorem 1 ReduceAndReconstructLoop() outputs a legal proof.

3.3 Duplications and Heuristics

If the input proof is not tree-like, then the clause δ of a context may participate
in more than one resolution step: in this case the modifications to the proof
graph cannot be executed in place. In fact, if δ, associated with a node nδ, is
part of a context to be transformed, it is necessary to create a copy n′δ of nδ, in
order to preserve the correctness of the other resolution steps (this problem does
not affect clauses nβ , nγ , nα of a context). Notice that a duplication increases
the size of the proof. Therefore rewriting steps that generate duplications are
carried out under some restrictions. In particular we allow duplications only in
the case of rules B1, B2, B2′, B3.

As far as the heuristics for choosing the application of a rule are concerned,
we respect the following precedence order (X > Y means: the application of X
is preferred over that of Y):

B2 > B3 > {B2′, B1} > A1′ > A2

For a more thorough discussion of heuristics in combination with duplications
we refer the reader to the appendix.

4 Comparison with RecyclePivots and Combination

As we have seen both RecyclePivots and ReduceAndReconstruct aim at reducing
the proof by exploiting redundancies in the pivots along a path from the root
to the leaves. The main difference between the approaches is that RecyclePivots
operates on a global context without changing the topology of the proof, while
ReduceAndReconstruct operates on local contexts and it allows the topology to
change. Both approaches have positive and negative aspects.

Operating on a global context without changing the topology allows a one-
pass visit and reduction of the proof. Maintaining a fixed topology of the proof
however may prevent the disclosure of hidden redundancies. For instance the ap-
plication of RecyclePivots to our previous running example would have stopped
to step (3), since no more redundant pivots can be found along a path (the proof
is regular). Our local contexts instead have to be gathered and considered mul-
tiple times. On the other hand, the ability of ReduceAndReconstruct to change
the topology may allow more redundancies to be exposed.

Another advantage of RecyclePivots is that it can reduce redundancies that
are separated by many resolution steps. Our B rewriting rules instead are appli-
cable only when there is a re-introduction of a certain variable immediately after
a resolution upon it (s in Figure 3-4). Such configurations, when not present in
the proof, can be produced by means of the application of the A2 rule. It is not
clear whether RecyclePivots could be simulated with a particular application
strategy of our rules. We leave this investigation as future work.

In an attempt of exploiting the advantages of both approaches, we devised a
naive hybrid approach of both reduction strategies, listed as Algorithm 4.

5 Experiments

We carried out an evaluation of the three algorithms RecyclePivots (RP), Re-
duceAndReconstruct (RR), and CombinedReduction (CR). The algorithms have
been implemented inside the tool OpenSMT [13], with proof-logging capabilities
enabled. Unfortunately we could not test our algorithms on the same instances
of [4], which are covered by IP rights. However on purely (unsatisfiable) SAT
instances taken from the SAT competition website3, we observed a similar be-
havior for the three techniques (for lack of space we do not report on this data
here).

3http://www.satcompetition.org

Algorithm 4: CombinedReduction

Input: A legal proof; numextloops: number of global loops; numintloops:
number of transformation loops for each global loop; timelimit: a
timeout

Output: A reduced legal proof
begin1

timeslot = timelimit/numextloops;2

for i=1 to numextloops do3

RecyclePivots(n⊥,∅);4

// RPtime is the time taken by RecyclePivots in the last call;5

ReconstructAndTransform(timeslot−RPtime,numintloops);6

end7

end8

We also experimented on the set of unsatisfiable benchmarks taken from
the SMT-LIB4, from the categories QF UF, QF IDL, QF LRA, QF RDL. For
these sets of benchmarks we have noticed that the aforementioned reduction
techniques are very effective. We believe that the reason is connected with the
fact that the introduction of theory-lemmata in SMT is performed lazily: the
delayed introduction of clauses involved in the final proof may negatively impact
the online proof construction in the SAT-Solver.

All the experiments were carried out on an Ubuntu server featuring a Dual-
Core 2GHz Opteron CPU and 4GB of memory; a timeout of 10 minutes and a
memory threshold of 2GB (whatever is reached first) were put as limit to the
executions.

The executions of RR and CR are parameterized with a time threshold, as
the algorithms require. We have chosen to set the threshold as a fraction of the
time taken by the solver to solve the benchmarks: more difficult instances are
likely to produce larger proofs, and therefore more time is necessary to achieve
reduction. Notice that, regardless of the ratio, RR and CR both perform at
least one complete transformation loop, which could result in an execution time
slightly higher than expected for low ratios and small proofs.

Table 1 shows the average reduction of the proofs after the application of
the algorithms5. Table 1a shows the reduction obtained after the execution
of RecyclePivots. Table 1b instead shows the reduction obtained with Reduce-
AndReconstruct and CombinedReduction parameterized with timeout (ratio ·
solving-time). In particular we report the reduction in the number of nodes and
edges, the reduction of the unsatisfiable core, and the actual transformation
time. Table 2 is organized as Table 1 except that it reports the best reduction
values obtained over all the benchmarks suites.

4http://www.smt-lib.org
5Full experimental data, as well as executables used in tests are available at

http://www.inf.usi.ch/phd/rollini/hvc.html.

NumBench AvgRedNodes AvgRedEdges AvgRedCore AvgTranTime (s)

RP 1370 6.7% 7.5% 1.3% 1.7

(a)

NumBench AvgRedNodes AvgRedEdges AvgRedCore AvgTranTime (s)

Ratio RR CR RR CR RR CR RR CR RR CR

0.01 1364 1366 2.7% 8.9% 3.8% 10.7% 0.2% 1.4% 3.5 3.4

0.025 1363 1366 3.8% 9.8% 5.1% 11.9% 0.3% 1.5% 3.6 3.6

0.05 1364 1366 4.9% 10.7% 6.5% 13.0% 0.4% 1.6% 4.3 4.1

0.075 1363 1366 5.7% 11.4% 7.6% 13.8% 0.5% 1.7% 4.8 4.5

0.1 1361 1364 6.2% 11.8% 8.3% 14.4% 0.6% 1.7% 5.3 5.0

0.25 1357 1359 8.4% 13.6% 11.0% 16.6% 0.9% 1.9% 8.2 7.6

0.5 1346 1348 10.4% 15.0% 13.3% 18.4% 1.1% 2.0% 12.1 11.5

0.75 1339 1341 11.5% 16.0% 14.7% 19.5% 1.2% 2.1% 15.8 15.1

1 1335 1337 12.4% 16.7% 15.7% 20.4% 1.3% 2.2% 19.4 18.8

(b)

Table 1. Results for SMT benchmarks. NumBench reports the number of benchmarks
solved and processed within the time/memory constraints, AvgRedNodes and AvgRed-
Edges report the reduction in the number of nodes and edges of the proof graphs, and
AvgRedCore reports the average reduction in the unsatisfiable core size. AvgTranTime
is the average transformation time in seconds.

On a single run RP clearly achieves the best results for reduction with respect
to transformation time. To get the same effect on average on nodes and edges,
for example, RR needs about 5 seconds and a ratio transformation time/solving
time equal to 0.1, while RP needs less than 2 seconds. As for core compression,
the ratio must grow up to 1. On the other hand, as already remarked, RP cannot
be run more then once.

The combined approach CR shows a performance which is indeed better
than the other two algorithms taken individually. it is interesting to see that the
global perspective adopted by RP gives an initial substantial advantage, which
is slowly but constantly reduced as more and more time is dedicated to local
transformations and cuts.

Table 2b displays some remarkable peaks of reduction obtained with RR and
CR approaches on the best individual instance. Interestingly we have noticed
that in some benchmarks, like 24.800.graph.smt of QF IDL suite, RecyclePivots
does not achieve any reduction, due to the high amount of nodes with multiple
resolvents present in its proof that forces RecyclePivots to reset the relevant
literal set RL all the time. CombinedReduction instead, even for a very small
ratio (0.01), performs very well (47.6% reduction for nodes, 49.7% reduction for
edges and 45.7% for core).

MaxRedNodes MaxRedEdges MaxRedCore

RP 65.1% 68.9% 39.1%

(a)

MaxRedNodes MaxRedEdges MaxRedCore

Ratio RR CR RR CR RR CR

0.01 54.4% 66.3% 67.7% 70.2% 45.7% 45.7%

0.025 56.0% 77.2% 69.5% 79.9% 45.7% 45.7%

0.05 76.2% 78.5% 78.9% 81.2% 45.7% 45.7%

0.075 76.2% 78.5% 79.7% 81.2% 45.7% 45.7%

0.1 78.2% 78.8% 82.9% 83.6% 45.7% 45.7%

0.25 79.3% 79.6% 84.1% 84.4% 45.7% 45.7%

0.5 76.2% 79.1% 83.3% 85.2% 45.7% 45.7%

0.75 78.2% 79.9% 84.4% 86.1% 45.7% 45.7%

1 78.3% 79.9% 84.6% 86.1% 45.7% 45.7%

(b)

Table 2. Results for SMT benchmarks. MaxRedNodes and MaxRedEdges are
the maximum reduction of nodes and edges achieved by the algorithms in
the suite on a single benchmark. The benchmark may be different for dif-
ferent algorithms. We refer the reader to the complete table available at
http://www.inf.usi.ch/phd/rollini/hvc.html for more details.

6 Conclusion

We have presented a proof reduction algorithm that is based on an exhaustive
set of local transformation rules. Each rule can be applied with respect to a
particular local context. In our framework reduction rules (that effectively prune
the proof) can be interleaved with a rule that locally perturbates the topology
of the proof, in order to create new opportunities for reduction.

We have compared our approach with a previous work with which we share
the idea of eliminating redundant pivots from a path from the root to the leaves.
In contrast to previous work, our framework can be parameterized with a par-
ticular instantiation strategy for the rules, and with a hard limit in the amount
of transformations to be carried out.

We implemented both methods plus a hybrid approach and we ran an exten-
sive experimental evaluation over a set of benchmarks from the SMT-LIB. The
results show that the hybrid approach yields a higher level of reduction in the
proof size.

As future work we would like to investigate the effect of the proof reduction
algorithms on some particular application, and in particular in interpolantion-
based model checking. Also we plan to derive more efficient and controlled strate-
gies for the application of the rewrite rules and their combination with previous
approaches.

References

1. H. Amjad. Compressing Propositional Refutations. In AVoCS, pages 7–18, 2006.
2. H. Amjad. Data Compression for Proof Replay. J. Autom. Reasoning, 41(3/4),

2008.
3. N. Amla and K. McMillan. Automatic Abstraction Without Counterexamples. In

TACAS, pages 2–17, 2003.
4. O. Bar-Ilan, O. Fuhrmann, S. Hoory, O. Shacham, and O. Strichman. Linear-Time

Reductions of Resolution Proofs. In HVC, pages 114–128, 2008.
5. R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich. Flexible Interpolation

with Local Proof Transformations. To appear in ICCAD 2010. Draft available at
http://www.inf.usi.ch/postdoc/bruttomesso/ICCAD2010.

6. S. Cotton. Two Techniques for Minimizing Resolution Proofs. In SAT, pages
306–312, 2010.

7. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Restructuring
Resolution Refutations for Interpolation. Technical report, ETH, 2008.

8. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant
Strength. In VMCAI, pages 129–145, 2010.

9. T. Henzinger and K. L. McMillan R. Jhala, R. Majumdar. Abstractions from
Proofs. In POPL, 2004.

10. R. Jhala and K.L. McMillan. Interpolant-Based Transition Relation Approxima-
tion. In CAV, pages 39–51, 2005.

11. K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages
1–13, 2003.

12. K. L. McMillan. An Interpolating Theorem Prover. In TACAS, pages 16–30, 2004.
13. R.Bruttomesso, E.Pek, N.Sharygina, and A.Tsitovich. The OpenSMT solver. In

TACAS, 2010.
14. C. Sinz. Compressing Propositional Proofs by Common Subproof Extraction. In

EUROCAST, pages 547–555, 2007.
15. C. Sinz, A. Kaiser, and W. Kuchlin. Formal Methods for the Validation of Auto-

motive Product Configuration Data. AI EDAM, 17(1):75–97, 2003.
16. G. Tseitin. On the Complexity of Proofs in Propositional Logic. Automation of

Reasoning: Classical Papers in Computational Logic 1967-1970, 2, 1983.
17. Lintao Zhang and Sharad Malik. Validating SAT Solvers Using an Independent

Resolution-Based Checker: Practical Implementations and Other Applications. In
DATE, 2003.

