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Outline of the talk

● Motivations and Introduction 
● The Developer's perspective

● Architecture
● Extending OpenSMT

● The User's perspective
● Using OpenSMT over API
● Getting witnesses (models/proofs)
● Getting interpolants



 

Motivation
● Satisfiability Modulo Theory (SMT) solvers are 

key engines of several verification approaches
● Most solvers available are proprietary 

(Z3, Yices, Barcelogic, MathSAT… )
● OpenSMT is an effort of providing a simple and 

extensible infrastructure, and efficient at the 
same time. 

● Currently,  the following logics are supported: 
QF_UF, QF_LRA, QF_IDL, QF_RDL, QF_BV 
and several theory combinations (comparison is 
available at SMT competition web-site).

●



 

Introduction

● Satisfiability Modulo Theories combines the 
efficiency of SAT and theory-specific decision 
procedures

} }



 

We need to reason about Boolean combinations 
of atoms in a theory T (LRA for instance)

SAT  (Boolean) Dec. Proc. for LRA
(e.g.  Simplex)(e.g. DPLL)



 

DPLL+LRA         DPLL(LRA)



 

● DPLL(LRA) framework seems easy to achieve
● Let DPLL enumerate a Boolean model
● Check the LRA part with Simplex

● However it is not enough to connect an efficient 
DPLL solver and Simplex to get an efficient 
DPLL(LRA)
● Theory Propagation
● Don't wait for a complete Boolean model
● Preprocessing
● Conversion in CNF
● Theory layering, etc.



 

e(DPLL(T))  = e(DPLL)+e(T)+e(COMM)

DPLL T

OpenSMT provides you with e(DPLL) and e(COMM)

COMM
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Architecture



 

Architecture
● Written in C++
● Based on MiniSAT2 SAT-Solver
● Enode data structure (borrowed from Simplify)

Symbol nodes: store the signature (name) of the operator

List nodes: store a list of terms

Term nodes: store a term of the formula

Term node List node

Symbol node
car cdr cdrcar



 

Architecture
● Written in C++
● Based on MiniSAT2 SAT-Solver
● Enode data structure (borrowed from Simplify)

Symbol nodes

List nodes

Term nodes



 

Extending OpenSMT

● To create an empty template for a new theory 
solver use script create_tsolver.sh
● Creates a new directory with basic class files
● Creates/Sets up Makefile for compilation
● Adds a new logic 
● Integrates the new solver with the core
● Basically, it creates an incomplete solver
● (demo)



 

Extending OpenSMT

class Tsolver
{
  void inform       ( Enode * );
  bool assertLit    ( Enode * );
  bool check        ( bool );
  void pushBckPoint ( );
  void popBckPoint  ( );
  bool belongsToT   ( Enode * );
  
  [...]

  vector< Enode * > & explanation;
  vector< Enode * > & deductions;
  vector< Enode * > & suggestions;
}
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The user's perspective

● APIs allow quick integration of the SMT-
solver's facilities by linking to a library

● OpenSMT APIs are inspired to Yices
● E.g.

● Create a context ctx of QF_LRA solver
opensmt_context ctx = opensmt_mk_context( qf_lra );

● Create a variable i of type integer 
char var[32]=”i”;

opensmt_expr i = opensmt_mk_int_var( ctx, var );



 

The user's perspective

● Example: encode the following simple loop 
symbolically (api_example/example2.c)

1 int i=0;
2 while (i<10)
3 i++;
4 assert( i==11 );

opensmt_context ctx = opensmt_mk_context( qf_idl );

opensmt_expr int_i = opensmt_mk_int_var( ctx, “i@0” );

opensmt_expr zero = opensmt_mk_num_from_string( ctx, "0" );

opensmt_expr eq = opensmt_mk_eq( ctx, int_i, zero );

opensmt_assert( ctx, eq );



 

The user's perspective

● Example: encode the following simple loop 
symbolically (api_example/example2.c)

1 int i=0;
2 while (i<10)
3 i++;
4 assert( i==11 );

opensmt_expr expr_list[2];
expr_list[0] = int_i;  
opensmt_expr one = opensmt_mk_num_from_string( ctx, "1" );
expr_list[1] = one;
opensmt_expr plus = opensmt_mk_plus( ctx, expr_list, 2 );
opensmt_expr int_i_prime = opensmt_mk_int_var( ctx, “i@1” );
eq = opensmt_mk_eq( ctx, int_i_prime, plus );
opensmt_assert( ctx, eq );



 

Getting witnesses - model

● Enable flag 

print_model 1

in .opensmtrc to compute the assignment in case SAT

● Model is printed in SMT-LIB syntax

(= x 1)

(not b)

(so it is handy to check – just put in conjunction with 
the original formula)



 

Getting witnesses - proof/cores

● Enable flag print_proof 1 in .opensmtrc

● Resolution Proof format
● Leaf clauses (let cls_1 (or a (not b))

● Res. Step (let cls_3 (res cls_1 cls_2 a))

(let cls_1 (or a (not b))

(let cls_2 (or b c))

(let cls_3 (res cls_1 cls_2 b))



 

Interpolation

● Interpolants are widely used in SAT-based 
Model Checking, for instance to compute over-
approximations

I defined over the common language of A and B



 

Interpolation

● OpenSMT computes the general interp. form:
● given an unsat conjunction
● computes
●  such that



 



 

Conclusion

● OpenSMT is an open, efficient, and extensible 
SMT-Solver

● Provides a framework to experiment with 
decision procedures

● Features API, witnesses generation, interpolant 
generation



 

Availability

● Available at verify.inf.usi.ch/opensmt

● Discussion group 
groups.google.com/group/opensmt

● Demo/more details on request
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