
The OpenSMT Solver

Roberto Bruttomesso, Edgar Pek,
Natasha Sharygina, and Aliaksei Tsitovich

 1 Formal Verification and Security Group, University of Lugano, Switzerland
 2 University of Urbana Champaign, Illinois, USA

1

1 2

1

Outline of the talk

● Motivations and Introduction
● The Developer's perspective

● Architecture
● Extending OpenSMT

● The User's perspective
● Using OpenSMT over API
● Getting witnesses (models/proofs)
● Getting interpolants

Motivation
● Satisfiability Modulo Theory (SMT) solvers are

key engines of several verification approaches
● Most solvers available are proprietary

(Z3, Yices, Barcelogic, MathSAT…)
● OpenSMT is an effort of providing a simple and

extensible infrastructure, and efficient at the
same time.

● Currently, the following logics are supported:
QF_UF, QF_LRA, QF_IDL, QF_RDL, QF_BV
and several theory combinations (comparison is
available at SMT competition web-site).

●

Introduction

● Satisfiability Modulo Theories combines the
efficiency of SAT and theory-specific decision
procedures

} }

We need to reason about Boolean combinations
of atoms in a theory T (LRA for instance)

SAT (Boolean) Dec. Proc. for LRA
(e.g. Simplex)(e.g. DPLL)

DPLL+LRA DPLL(LRA)

● DPLL(LRA) framework seems easy to achieve
● Let DPLL enumerate a Boolean model
● Check the LRA part with Simplex

● However it is not enough to connect an efficient
DPLL solver and Simplex to get an efficient
DPLL(LRA)
● Theory Propagation
● Don't wait for a complete Boolean model
● Preprocessing
● Conversion in CNF
● Theory layering, etc.

e(DPLL(T)) = e(DPLL)+e(T)+e(COMM)

DPLL T

OpenSMT provides you with e(DPLL) and e(COMM)

COMM

Outline of the talk

● Introduction and Motivations
● The Developer's perspective

● Architecture
● Extending OpenSMT

● The User's perspective
● Programming with API
● Getting witnesses (models/proofs)
● Getting interpolants

Architecture

Architecture
● Written in C++
● Based on MiniSAT2 SAT-Solver
● Enode data structure (borrowed from Simplify)

Symbol nodes: store the signature (name) of the operator

List nodes: store a list of terms

Term nodes: store a term of the formula

Term node List node

Symbol node
car cdr cdrcar

Architecture
● Written in C++
● Based on MiniSAT2 SAT-Solver
● Enode data structure (borrowed from Simplify)

Symbol nodes

List nodes

Term nodes

Extending OpenSMT

● To create an empty template for a new theory
solver use script create_tsolver.sh
● Creates a new directory with basic class files
● Creates/Sets up Makefile for compilation
● Adds a new logic
● Integrates the new solver with the core
● Basically, it creates an incomplete solver
● (demo)

Extending OpenSMT

class Tsolver
{
 void inform (Enode *);
 bool assertLit (Enode *);
 bool check (bool);
 void pushBckPoint ();
 void popBckPoint ();
 bool belongsToT (Enode *);

 [...]

 vector< Enode * > & explanation;
 vector< Enode * > & deductions;
 vector< Enode * > & suggestions;
}

Outline of the talk

● Introduction and Motivations
● The Developer's perspective

● Architecture
● Extending OpenSMT

● The User's perspective
● Programming with API
● Getting witnesses (models/proofs)
● Getting interpolants

The user's perspective

● APIs allow quick integration of the SMT-
solver's facilities by linking to a library

● OpenSMT APIs are inspired to Yices
● E.g.

● Create a context ctx of QF_LRA solver
opensmt_context ctx = opensmt_mk_context(qf_lra);

● Create a variable i of type integer
char var[32]=”i”;

opensmt_expr i = opensmt_mk_int_var(ctx, var);

The user's perspective

● Example: encode the following simple loop
symbolically (api_example/example2.c)

1 int i=0;
2 while (i<10)
3 i++;
4 assert(i==11);

opensmt_context ctx = opensmt_mk_context(qf_idl);

opensmt_expr int_i = opensmt_mk_int_var(ctx, “i@0”);

opensmt_expr zero = opensmt_mk_num_from_string(ctx, "0");

opensmt_expr eq = opensmt_mk_eq(ctx, int_i, zero);

opensmt_assert(ctx, eq);

The user's perspective

● Example: encode the following simple loop
symbolically (api_example/example2.c)

1 int i=0;
2 while (i<10)
3 i++;
4 assert(i==11);

opensmt_expr expr_list[2];
expr_list[0] = int_i;
opensmt_expr one = opensmt_mk_num_from_string(ctx, "1");
expr_list[1] = one;
opensmt_expr plus = opensmt_mk_plus(ctx, expr_list, 2);
opensmt_expr int_i_prime = opensmt_mk_int_var(ctx, “i@1”);
eq = opensmt_mk_eq(ctx, int_i_prime, plus);
opensmt_assert(ctx, eq);

Getting witnesses - model

● Enable flag

print_model 1

in .opensmtrc to compute the assignment in case SAT

● Model is printed in SMT-LIB syntax

(= x 1)

(not b)

(so it is handy to check – just put in conjunction with
the original formula)

Getting witnesses - proof/cores

● Enable flag print_proof 1 in .opensmtrc

● Resolution Proof format
● Leaf clauses (let cls_1 (or a (not b))

● Res. Step (let cls_3 (res cls_1 cls_2 a))

(let cls_1 (or a (not b))

(let cls_2 (or b c))

(let cls_3 (res cls_1 cls_2 b))

Interpolation

● Interpolants are widely used in SAT-based
Model Checking, for instance to compute over-
approximations

I defined over the common language of A and B

Interpolation

● OpenSMT computes the general interp. form:
● given an unsat conjunction
● computes
● such that

Conclusion

● OpenSMT is an open, efficient, and extensible
SMT-Solver

● Provides a framework to experiment with
decision procedures

● Features API, witnesses generation, interpolant
generation

Availability

● Available at verify.inf.usi.ch/opensmt

● Discussion group
groups.google.com/group/opensmt

● Demo/more details on request

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

