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Abstract. As first step, most model checkers used in the hardware in-
dustry convert a high-level register transfer language (RTL) design into a
netlist. However, algorithms that operate at the netlist level are unable
to exploit the structure of the higher abstraction levels, and thus, are
less scalable. The RTL level of a hardware description language such as
Verilog is similar to a software program with special features for hard-
ware design such as bit-vector arithmetic and concurrency. We describe
a hardware model checking tool, VCEGAR, which performs verification
at the RTL level using software verification techniques. It implements
predicate abstraction and a refinement loop as used in software verifica-
tion. The novel aspects are the generation of new word-level predicates,
an efficient predicate image computation in presence of a large number of
predicates, and precise modeling of the bit-vector semantics of hardware
designs.

1 Introduction

Most new hardware designs are implemented at a high level of abstraction, e.g.,
using register transfer language (RTL), or even at the system-level. The RTL
level of a hardware description language such as Verilog is very similar to a
software program in ANSI-C, and offers special features for hardware designers
such as bit-vector arithmetic and concurrency. However, most model checkers
used in hardware industry still operate on a low-level design representation called
a netlist. This is due to lack of automated verification techniques at the RTL
level. Converting a high-level RTL design into a netlist results in a significant
loss of structure present at the RTL level. This makes verification at the netlist
level inherently more difficult and less scalable.

VCEGAR, the tool presented in this paper, is a hardware model checker
that performs verification at the RTL level directly. In order to reduce the state
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space explosion problem during model checking, VCEGAR performs abstrac-
tion. Abstraction techniques reduce the state space by mapping the set of states
of the actual, concrete system to an abstract, and smaller, set of states in a way
that preserves the relevant behaviors of the system. Since high-level hardware
designs are similar to concurrent software, it implements abstraction algorithms
that have been devised for software verification. VCEGAR employs predicate
abstraction [1], a key technique used in the SLAM software verification project
[2]. Predicate abstraction removes data by only keeping track of certain pred-
icates on the data. Each predicate is represented by a Boolean variable in the
abstract model, while the original data paths are eliminated.

The abstract model is computed as a conservative over-approximation of the
original circuit. This implies that if the abstraction satisfies the property, the
property also holds on the original circuit. The drawback of the conservative
abstraction is that when model checking of the abstraction fails, it may produce
a counterexample that does not correspond to any concrete counterexample.
This is usually called a spurious counterexample. The basic idea of abstraction
refinement techniques [3,4,2] is to create a new abstract model that contains
more detail in order to prevent the spurious counterexample. This process is
iterated until the property is either proved or disproved. It is known as the
Counterezample Guided Abstraction Refinement framework [4].

VCEGAR is geared towards application by hardware designers. It accepts

Verilog, a popular hardware description language, as input. VCEGAR . checks
safety properties of the hardware designs.
Related Work. In the hardware domain, the most commonly used abstraction
technique is localization reduction [3]. The abstract model is created from a
given netlist level circuit by removing a large number of latches together with
the logic required to compute their next state. During refinement, some of the
removed latches may be added back to make the abstract model more precise.
While localization reduction is a special case of predicate abstraction, predicate
abstraction can result in a much smaller abstract model. As an example, assume
a circuit contains two sets of latches, each encoding a number. Predicate ab-
straction can keep track of a numerical relation between the two numbers using
a single predicate, and thus, using a single state bit in the abstract model. Lo-
calization reduction typically turns all bits of the two words into visible latches,
and thus, the abstraction is identical to the original model.

Clarke et al. introduce a SAT-based technique for predicate abstraction of
circuits given in Verilog [5]. The first step is to obtain predicates from the control
flow guards in the Verilog file. The circuit is then synthesized into netlist level.
Any refinement steps are carried out at the netlist level, new word-level pred-
icates are never introduced. VCEGAR operates at the RTL level also during
refinement and uses weakest pre-conditions to derive new word-level predicates.

2 Word-level Circuit Verification with VCEGAR

This section provides a short overview of ideas implemented in VCEGAR. For
more information, we refer the reader to [6, 7]. The abstraction step in VCEGAR



is performed by computing a predicate image. Two problems arise when applying
predicate abstraction to RTL level circuits: 1) The computation of the abstract
model is hard in presence of large number of predicates, and 2) discovery of
suitable word-level predicates for abstraction refinement.

In order to address the first problem, the tool divides the set of predicates

into clusters of related predicates. The abstraction is computed separately with
respect to the predicates in each cluster. Since each cluster contains only a small
number of predicates, the computation of the abstraction becomes more efficient.
We refer to this technique as predicate clustering. We do not require the clusters
to be disjoint, that is, they can have common predicates.
Example: Let x,y denote the current state and z’,73’ denote the next state of a
hardware design. Let the transition relation R(x,y,2’,y') be 2’ = y Ay’ = x. Let
the set of predicates be {x =1,y = 1,2’ = 1,3/ = 1}. The value of the predicate
y' = 11is affected by the value of = (as y’ equals x). Note that the value of 3y’ =1
is not affected by the value of y. Thus, we keep £ = 1 and v’ = 1 together in a
cluster C;. Similarly, the other cluster Cy := {y = 1,2’ = 1} is obtained.

The tool provides various options for predicate clustering. These options
control the precision of the abstraction and the time required to compute the
abstraction. The tool uses a SAT solver to compute the abstract model [8].

Due to predicate clustering, additional spurious counterexamples are intro-
duced, which have to be removed during the refinement phase. When a spurious
counterexample is encountered, we first check whether each transition in the
counterexample can be simulated on the original program. This is done by cre-
ating a SAT instance for the simulation of each abstract transition. If the SAT
instance for an abstract transition is unsatisfiable, then the abstract transition
is spurious. In this case, we refine the abstraction by adding constraints on the
abstract transition relation, which eliminate the spurious transition. We make
use of the unsatisfiable core of the SAT instance to identify a small subset of
the existing predicates that are causing the transition to be spurious. The fewer
predicates are found, the more spurious transitions are eliminated in one step.

When all SAT instances for the simulation of abstract transitions are sat-
isfiable, it means that none of the abstract transitions is spurious due to the
predicate clustering. The immediate conclusion is that the spurious counterex-
ample is caused by a lack of appropriate predicates. For this case, VCEGAR
uses a refinement technique employed in software verification tools. It first de-
termines a set of predicates that causes the simulation to fail. Subsequently, it
computes the weakest precondition of these predicates with respect to the tran-
sition function given by the circuit in order to obtain new word-level predicates.
Ezxample: Let the property be < 3, and the next state function for the register
x be ((x < 5)?(x +2) : x), where ? denotes a conditional operator. Suppose we
obtain a spurious counterexample of length equal to 1. The weakest precondition
wpofx < 3isgivenas (((z < 5)? (z+2) : ) < 3). Refinement corresponds to
adding the Boolean expressions occurring in wp to the existing set of predicates.

In case of a long spurious counterexample, the weakest precondition computa-
tion may become expensive due to a blowup in the size of weakest pre-conditions.



We address this problem by applying a syntactic simplification to the weakest
preconditions at each step. The simplification uses data from the abstract error
trace. We exploit the fact that many of the control flow guards in the Verilog file
are also present in the current set of predicates. The abstract trace assigns truth
values to these predicates in each abstract state. In order to simplify the weakest
preconditions, we substitute the guards in the weakest preconditions with their
truth values. Furthermore, we only add the atomic predicates in the simplified
weakest precondition as the new predicates (more details in [6]).
Ezxample: Suppose the guard x < 5 is present in the current set of predicates.
Let the value of x < 5 in an abstract state § be true. The weakest precondition
given as (((x < 5)? (z+2) : z )< 3) can be simplified in 5 by substituting
the value of x < 5. This results in a new atomic predicate z +2 < 3 (or = < 1).
VCEGAR was used to check safety properties of Instruction Cache Unit and
Instruction Cache RAM (ICRAM) of Sun PicoJava II microprocessor in [7]. It
has also been applied to examples from the opencores (www.opencores.org),
and the Texas97 and VIS benchmark suites.

3 Conclusion

This paper describes a hardware model checker, VCEGAR, that implements
counterexample guided abstraction and a refinement loop for RTL Verilog de-
signs. It uses the idea of predicate abstraction from software verification tools.
VCEGAR provides various options for balancing the precision of abstraction
and the time required for abstraction computation. For abstraction-refinement
new word-level predicates are discovered by computing syntactic weakest pre-
conditions of predicates with respect to Verilog statements. This technique has
not been applied to RTL circuits before. A user of the tool needs to provide the
input program, property to check, and a few options. Given these inputs, the
tool performs all the steps of the CEGAR loop automatically.
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